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1 Introduction

Machine learning (ML) has paved its way into academia and industry, impacting numer-
ous fields from health care and finance to social sciences. At the core of the ML revolution is
the ability of flexible model estimation and amazing predictive power of the methods. The
growing debate around ML emphasizes that prediction does not imply causation. Going beyond
mere predictive associations to identify cause-and-effect relationships is at the centre of most
questions concerning the effects of policies, medical treatments, marketing campaigns, business
decisions, etc. (see, e.g., Athey, 2017). The different focus of causal modelling called for ML
approaches that can flexibly and reliably estimate causal effects, establishing causal machine

learning (CML).

CML integrates principles of ML and causal inference. The causality literature provides
conditions for identification and estimation of effects instead of associations. Building on these
conditions, counterfactual problems can be transformed into specific prediction problems (see,
e.g., Imbens and Wooldridge, 2009) for which ML methods are suitable (see, e.g., Hastie, Tib-
shirani, and Friedman, 2009 for an overview on ML methods). The flexibility of ML combined
with careful use of data leads to reliable treatment effect estimators that are also able to uncover

treatment effect heterogeneity (for an overview, see Athey and Imbens, 2017).

In recent years, researchers from different disciplines contributed to method development
in CML. Although, such multidisciplinary work on a common subject is wonderful news from
a scientific point of view, it raises the question which of these many proposed methods to use
in any specific empirical study. In this paper, we focus on this question for a special case, which
is popular in the CML literature: (i) when causal effects are plausibly identified under uncon-
foundedness (i.e., selection-on-observables), and (i1) the researcher is interested in aggregated

average causal effects as well as their possibly fine-grained heterogeneity.



A key condition of any causal effect estimator to be attractive in applications is that it has
acceptable statistical properties. Such theoretical guarantees and the implied ability to conduct
inference are crucial for effect estimation, because, different to prediction settings, realisations
from the true effects, the so-called ‘ground truth’ is unobservable and can thus not be used to
evaluate the performance of the specific estimation. Another important factor is to keep the
estimation of the many different causal parameters sufficiently simple, for example, by using
the same, or the same type of causal machine learners for all of them. This avoids the time
intensive tasks of tuning and monitoring many different models. We will call such methods
Comprehensive Causal Machine Learners (CCML). Finally, it is advantageous to have internal
consistency of the possibly many estimated effects, in the sense that effects at the higher aggre-

gation levels are close to appropriately aggregated lower-level effects.

In the light of these three arguably desirable properties, we analyse three estimation prin-
ciples that belong to the class of CCML and have the required theoretical guarantees. The meth-
ods are Debiased/Double Machine Learning (dml; Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey, and Robins, 2018), the Generalized Random Forest (grf; Athey, Tib-
shirani, and Wager, 2019), and the Modified Causal Forest (mcf; Lechner, 2018). Only the latter

fulfils the third condition of internal consistency by construction.

The intended contribution of this paper to the literature is two-fold: The first contribution
are the theoretical guarantees for the mcf that were missing so far. Additionally, the similarities
and differences between the three approaches are documented. The second contribution is large
scale-simulation exercise to evaluate the finite-sample performance of all three CCMLs in many
different settings to better understand which estimator may have advantages or disadvantages
in certain situations. Crucially, these simulations also cover the inference procedures that usu-

ally were absent from the small number of existing and far more limited simulation evidence.



The results yield several practical recommendations. Our findings indicate that dml-based
methods predominantly excel in estimation of average treatment effects (ATE) or group treat-
ment effects (GATE) with fewer groups. However, for finer causal heterogeneity, explicitly
outcome-centred forest-based approaches are superior. Additionally, mcf offers three benefits:
it is the most robust estimator even for the ATE in cases when dm/-based approaches underper-
form because of substantial selectivity that needs to be corrected for. Second, it outperforms
both dml and grf'in GATE estimation when the number of groups gets larger. Finally, it is the

only estimator that is internally consistent.

The following section surveys the contribution of CML methods to the estimation of ATE
and more fine-grained conditional average treatment effects (CATEs) under unconfoundedness.
Section 3 introduces the notation of the potential outcome models, defines the parameters of
interest, and spells out the standard assumptions imposed under unconfoundedness. Section 4
discusses the three CCML approaches and provides theoretical guarantees for the mcf. The
large-scale simulation study is summarized in Section 5. Section 6 concludes. Appendix A con-
tains the proofs of the theoretical properties of the mcf. Implementational details of the simula-

tion study are collected in Appendix B, while Appendix C holds its detailed results.

2 Literature

For causal inference under the unconfoundedness assumption (see Rubin, 1974), the av-
erage treatment effect (ATE) represents one of the main parameters of interest capturing the
overall impact of a treatment or an intervention. For ATE estimators, such as inverse probability
weighting (IPW) and propensity score matching (see, e.g., Imbens, 2004), propensity score es-
timation plays a central role. Both estimators are consistent when a parametric model for the
propensity score is correctly specified. Consequently, one of the first applications of ML meth-
ods in ATE estimation involved flexible propensity score estimation. Various ML approaches,

such as Neural Networks, Support Vector Machines, Decision Trees (Westreich, Lessler, and
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Funk, 2010) or Boosting Models (McCaffrey, Ridgeway, and Morral, 2004; Westreich et al.,

2010), have been proposed to improve the estimation of the propensity score.

However, even flexible ML methods may exhibit poor performance if they prioritize fit-
ting the propensity score well instead of explicitly balancing the covariates across treatment
groups, which is important to reduce the bias of the estimator for the causal parameter of inter-
est. An estimator of the propensity score that explicitly aims to maximize covariate balancing
was introduced in Imai and Ratkovic (2014). Alternatively, Graham, Pinto, and Egel (2012)
improve IPW estimation by covariate balancing within the empirical likelihood framework,

without explicit modelling of the propensity score.

Cannas and Arpino (2019) investigate the performance of matching and weighting esti-
mators based on propensity scores obtained from Logistic Regression, Decision Tree, Bagging,
Boosting, Random Forest, Neural Networks, and Naive Bayes. Their simulation results indicate
that Random Forests consistently outperform other methods, particularly in the context of IPW.
Goller, Lechner, Moczall, and Wolff (2020) compare Random Forests, LASSO Logit Regres-
sion, and Probit estimation of the propensity score for a matching estimator in an active labour
market policy setting, revealing that LASSO may yield more credible results than conventional

propensity score estimation methods, but overall results were mixed.

Under the standard unconfoundedness assumptions, to be detailed in Section 3, ATE is
alternatively identified as a difference between conditional expectations of the outcome variable
for the treated and non-treated populations. This leads to regression-based estimation of the two
conditional expectations. Assuming a correct specification of the outcome models, their differ-
ence yields a consistent ATE estimator. In the ML literature, tree-based methods such as BART
(Hill, 2011) and Ensemble Methods (Austin, 2012) were introduced to obtain regression-based
estimators of ATEs. However, issues like regularization bias (Athey, Imbens, and Wager, 2018)

and slow convergence of ML methods render the outcome-based approach less popular.



Methods that combine propensity score-based and regression-based estimators to increase
robustness to misspecification have gained popularity. Two related approaches prevail in the
literature: Double-robust (DR) estimators and Neyman-orthogonal scores. DR estimators utilize
two nuisance functions, i.e., the propensity score and outcome models. They are consistent as
long as at least one of the nuisance functions is correctly specified. Certain DR estimators were
shown to be semi-parametrically efficient if both nuisance functions are correctly specified.
Ideas to combine propensity score and outcome modelling in a double-robust way originally
emerged in Robins, Rotnitzky, and Zhao (1994, 1995), leading to the Augmented Inverse Prob-
ability Weighting (AIPW) estimator for the ATE. Nevertheless, sensitivity to extreme propen-

sity scores, as in the case of the IPW estimator, remains an issue.'

Neyman-orthogonality ensures that the moment conditions identifying the target param-
eters are not locally affected by small perturbances in the nuisance parameter estimates (Cher-
nozhukov et al., 2018). Such an orthogonality property is leveraged, e.g., in Belloni, Cher-
nozhukov, and Hansen (2014) for ATE estimation with binary treatment and in Farrell (2015)
for multiple treatments. As Neyman-orthogonal score mitigates first order bias arising from ML
estimation of nuisance parameters (Bach, Chernozhukov, Kurz, and Spindler, 2024, p. 9), it
emerged as a key element for the Double Machine Learning (dml) framework introduced in
Chernozhukov et al. (2018). dml is a generic framework for obtaining consistent estimators and
valid inference for low-dimensional parameters combining Neyman-orthogonal scores? with
cross-fitting in high-dimensional settings under convergence rate conditions for the estimation
of the nuisance parameters that are achievable by many ML methods. Chernozhukov et al.

(2018) apply the dml framework to ATE estimation and derives its statistical properties.

! For potential benefits of trimming extreme propensity scores, see e.g., Huber, Lechner, and Wunsch (2013).
2 Note that the DR score of Robins and Rotnitzky (1995) is Neyman-orthogonal.
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Another approach for ATE estimation is Targeted Minimum Loss Estimation (tmle), a
non-parametric method that combines ML methods with a targeted updating step to reduce bias
and variance of the estimated parameter of interest (van der Laan and Gruber, 2012). tmle shares
some similarities with dm/. They both require estimation of nuisance parameters that are com-
bined in a way that yields a double-robust and semi-parametrically efficient estimator of the
ATE. Meanwhile dml utilizes the nuisance parameters in a Neyman-orthogonal score to miti-
gate the bias, fmle combines them in a two-stage estimation procedure addressing the bias and

yielding quantities for each observation that can be averaged into an ATE.

ML methods extend beyond ATE estimation and help uncover heterogeneity of the treat-
ment effects through analysis of Conditional Average Treatment Effects (CATEs). CATEs
quantify how the treatment affects an individual unit with specific characteristics. Prominent
methods include Causal Forests (Wager and Athey, 2018; Athey et al., 2019; Lechner, 2018),
along with dml-based estimators yielding estimated components of the DR efficient score that
are further regressed on the covariates as first proposed by van der Laan (2006). Alternative
approaches include Meta-learners, which use multiple machine learning algorithms as "base
learners" to estimate large-dimensional CATEs. The X-learner, introduced by Kiinzel, Sekhon,
Bickel, and Yu (2019), is effective in cases with uneven treatment groups, while the R-learner,
developed by Nie and Wager (2021), leverages the Robinson (1988) transformation to estimate
heterogeneous causal effects. For the tmle, the above-mentioned quantities of its two-stage pro-
cedure can be also averaged into a CATE using the corresponding part of the sample. In case
of a CATE for the finest granularity level, the tmle quantity depends on an observed outcome

and cannot serve for a prediction on a new sample containing covariates only.

The influential paper by Chernozhukov et al. (2018), averaging the estimated components
of individual DR efficient scores of Robins and Rotnitzky (1995) to estimate ATE, spanned

further methodological contributions in dml, particularly in discovering heterogeneity along a



chosen set of covariates, such as gender or age group. dml/ estimation of CATEs exploits the
fact that the conditional expectation of the DR efficient score given such covariates identifies
the respective CATEs. For low-dimensional sets of chosen covariates, OLS, Series, or Kernel
Regressions of the estimated DR score components on the chosen set of covariates estimate the
low-dimensional CATE and standard statistical inference applies, as shown in Semenova and
Chernozhukov (2021), Zimmert and Lechner (2019), and Fan, Hsu, Lieli, and Zhang (2022).
For a higher dimensionality of the set of the chosen covariates, Kennedy (2023) introduces the
DR-learner that takes the components of a classic DR estimator of ATE and regresses them on
all covariates to estimate a large-dimensional CATE and derives an upper bound on the DR-

learner error relative to an oracle.

The foundations for the heterogeneous treatment effect estimation by Causal Forests were
laid in a seminal paper by Athey and Imbens (2016) introducing splitting rules for treatment
effect estimation, as well as honest splitting to ensure valid inference for CATEs through tree-
based methods. Subsequently, Wager and Athey (2018) develop a nonparametric Causal Forest
algorithm based on honest trees and splitting rules maximizing heterogeneity in treatment ef-
fects across final leaves. The last step of the estimator of the possibly large-dimensional CATE
is obtained by averaging individual tree estimates. The Causal Forest is consistent and asymp-
totically normal. In a distinct but related approach, Athey et al. (2019) introduce the Generalized
Random Forests (g7f). It is based on an honest forest with a gradient-based approximation of an
estimator-specific splitting rule. The forest estimation determines importance weights of each
observation for the parameters of interest. In turn, these weights determine a neighbourhood of
observations that will contribute to the CATE estimation, instead of estimating the CATE di-
rectly as an average across honest trees as in Wager and Athey (2018). The forest weights then
enter a set of local moment conditions identifying the CATE. This estimator is consistent and
asymptotically Gaussian and generalizes beyond unconfoundedness. Additionally, Lechner

(2018) introduces a Modified Causal Forest (mcf) estimation procedure for ATEs and CATEs
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in a multiple treatment framework. He proposes a weights-based inference procedure utilizing
the weighted-outcome representation of forest estimates. mcf further differs from the other
Causal Forests in using the mean squared error of the CATE directly to find the best split.
Furthermore, it introduces a two-sample honesty for building the forest and the estimation of
the effects. A simulation study of Lechner (2018) shows superior performance of mcf to the
Causal Forest of Wager and Athey (2018). Bodory, Busshoff, and Lechner (2022) show that

the mcf works in applications replicating results from several papers in different fields.

The above-mentioned advances provide practitioners with several methods to estimate
treatment effects across different levels of granularity. Table 1 provides an overview of com-
monly used ML approaches for estimation of such treatment effects and evaluates them based
on (i) available statistical inference, (i1) internal consistency of estimates (i.e., higher level ag-
gregates are close to the aggregation of lower-level effects) and (iii) their ability to predict large-
dimensional CATEs on new data (with covariate information only). The overview reveals that
tmle and Meta-learners do not have available statistical inference for all levels and that tmle
cannot predict CATEs at the finest granularity level on a new data set that contains covariates
only. Thus, these two methods are not considered to be CCMLs. On the other hand, dm/ and
Causal Forests are approaches that fulfil the conditions for comprehensive treatment effect eval-
uation with available statistical inference and predictions for new data containing covariates
only. For Causal Forests, there is a Bayesian alternative which will not be pursued further be-

cause its inference procedure is not based on repeated sampling inference.

Focusing on estimation at different levels of granularity via CCML, dm/ operates via the
estimated components of the DR efficient scores that are regressed on covariates to yield lower
and higher-level aggregates of average treatment effects. Causal Forests, grf and mcf, provide
in their first stage CATE estimates at the highest level of granularity. Using direct aggregation

step of these CATEs, mcf leverages the weighted-outcome representation of forest predictions,



while grf'uses a variant of the AIPW score to yield higher level aggregations via a regression

step.

Table 1: Properties of commonly used ML methods for treatment effect estimation

Approach Parameters Statistical Internal CATE
Dimension of CATE ATE inference consistency prediction
large small by
covariates
dml Regr Regr Regr Yes No Yes
grf LocGMM Regr Regr Yes No Yes
mcf MCF Aggr Aggr Yes Yes Yes
Meta-learners ML Aggr * Aggr * No** Yes Yes
tmle TMLE TMLE TMLE Low-dim. (C)ATE Yes No
BART BART BayAggr BayAggr Bayesian Yes Yes

Note:  Regr: Regression-based estimation; Aggr: Aggregation of estimated IATEs; LocGMM: Local General Method of
Moments, MCF: Modified Causal Forest; BART: Bayesian Additive Regression Trees; BayAggr: Bayesian Aggre-
gation; TMLE: Targeted Minimum Loss Estimation.

* Averaging of the finest large-dimensional CATEs for Meta-learners was implemented e.g., in Salditt, Eckes, and
Nestler (2023).

** However, see recent developments in constructing valid confidence intervals for Meta-learners based on confor-
mal prediction in Alaa, Ahmad, and van der Laan (2024).

The literature on large scale simulation comparisons of finite sample properties of causal
CML methods is very limited. Among notable contributions, Knaus, Lechner, and Strittmatter
(2021) look at the finite-sample performance of selected machine learning estimators, covering
grf and generic approaches that can be combined with any ML method, yielding large-dimen-
sional CATE estimates based on pseudo-outcomes or modified covariates. Higher level aggre-
gates are simple averages of the corresponding CATEs. Using the Empirical Monte Carlo Study
(EMCS) approach, many components of their simulations are based on real data. The results
show that best-performing estimators at the large-dimensional CATE level produced most reli-
able estimates at higher aggregation levels in terms of MSE. In general, methods that utilized
both outcome and treatment equations are among the best-performing methods, including grf
with local centering.? Caron, Baio, and Manolopulou (2022) evaluate several Meta-learners in
an EMCS based on health data. Their results highlight variability in performance that depends

on the complexity of the data generating process. In a setting with a complex CATE, multitask

3 At the time the simulations of Knaus, Lechner, and Strittmatter (2021) were performed, the mcf was not yet available.
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learners, designed to estimate both outcome equations jointly such as Multitask Gaussian Pro-
cess introduced in Alaa and Van Der Schaar (2017), perform best in terms of MSE. The X-
learner performs the best in a setting with a simple CATE function and slightly unbalanced
treatment groups. Another health-data-based EMCS of Wendling, Jung, Callahan, Schuler,
Shah, and Gallego (2018) concentrates on large-dimensional CATE estimation in a common
healthcare setting when outcomes are binary and rare. The compared methods include BART,
grfwith local centering, Causal Boosting, and Causal Multivariate Adaptive Regression Splines
(MARS). The findings show that BART and Causal Boosting perform better across the scenar-
10s, as evaluated by the root MSE in the conditional probability (risk) difference estimates.
Except for one scenario involving highly heterogeneous treatment effects, the coverage rate for

BART, grf, and causal MARS was close to its nominal level.

Empirical applications using ML for treatment estimation span across many fields and
topics. The following non-exhaustive list illustrates the variety of applications ranging from
active labour market policy (Davies and Heller, 2017; Bertrand, Crépon, Marguerie, and Pre-
mand, 2021; Pytka and Gulyas, 2021; Knaus, Lechner, and Strittmatter, 2022; Cockx, Lechner,
and Bollens, 2023), education (Knaus, 2021; Farbmacher, Kégler, and Spindler, 2021), social
experiments (Athey and Wager, 2019; Strittmatter, 2023), energy use (Knittel and Stolper,
2021), natural resource rents (Hodler, Lechner, and Raschky, 2023), and the dating market
(Boller, Lechner, and Okasa, 2021) to medicine (Langenberger, Steinbeck, Schoner, Busse,
Pross, and Kuklinski, 2023). For the comprehensive nature of the dm! framework, Knaus (2022)

demonstrates its flexibility in an active labour market programme evaluation setting.

4 To the best of our knowledge, this is the only study that also investigates the performance of the corresponding inference
procedures. The simulation study in Wendling et al. (2018) differs from the simulation in Section 5 by using fixed covariates
across replications. Despite this difference, their results are in line with the results in Section 5 confirming that high treatment
heterogeneity negatively affects the coverage probability. Meanwhile DGPs with low treatment heterogeneity have coverage
probability closer to nominal rates.
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3 Causal framework

3.1 The potential outcome model

We use Rubin’s (1974) potential outcome language to describe a multiple treatment
model under unconfoundedness, selection-on-observables, or conditional independence (Im-
bens, 2000, Lechner, 2001). Let D denote the treatment that may take a known number of M
different integer values from 0 to M-1. The (potential) outcome of interest that realises under
treatment d is denoted by Y?. For each observation, we observe only the particular potential

outcome that is related to the treatment status the observation is observed to be in,

M-1
V= Z I(d =d) y,.d , where 1(-) denotes the indicator function, which equals one if its argument
d=0

is true.5 There are two groups of variables to condition on, X and Z. X contains those covari-
ates needed to correct for selection bias (confounders), while Z contains variables that define
(groups of) population members for which an average causal effect estimate is desired.® X and

Z may be discrete, continuous, or both. They may overlap in any way. Denote the union of the
two groups of variables by X, X = (X,Z),dm(X)=p 7
Below, we investigate the following average causal effects:

IATE(m,l;x,A)=E(Y" -Y'| X =x,D € A)

GATE(m,l;z,A) = E(Y" =Y' | Z = 2,D € A) = [ IATE(m,1;%,2,A) f; (F)dx,

|Z=z,DeA

ATE(m,[;A)=E(Y" -Y' | DeA) :I]ATE(m,l;x,A)fX‘DeA(x)dx.

If not obvious otherwise, capital letters denote random variables, and small letters their values. Small values subscripted by
‘i’ denote the value of the respective variable of observation i’

In the rest of the paper, we call these two sets of variables ‘features’ (common in the ML literature) and ‘covariates’
(common in the econometrics literature) interchangeably, reflecting the integration of ML and causal inference into CML.

To avoid complications, we assume p to be finite (although it may be very large).
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The Individualized Average Treatment Effects (IATEs) measure the mean impact of
treatment m compared to treatment / for units with features x that belong to treatment groups A,
where A denotes all treatments of interest.® The IATEs represent the causal parameters at the
finest aggregation level of the features available. On the other extreme, the Average Treatment
Effects (ATEs) represent the population averages. If A relates to the population with D=m, then
this is the Average Treatment Effect on the Treated (ATET) for treatment m. However, for
example, it might also relate to a combination of two or more treatment populations. ATE and
ATET are the classical parameters investigated in many causal studies. The Group Average
Treatment Effect (GATE) parameters are in-between those two extremes with respect to their
aggregation levels.” IATEs and GATEs are special cases of the already mentioned Conditional

Average Treatment Effects (CATEs).

3.2 Identifying assumptions

The following set of assumptions identifies the causal effects discussed in the previous

section (see Imbens, 2000, Lechner 2001):1°

(v, Y", YY" IID| X =x, Vx e y; (CIA)
0<P(D=d|X =x)=p,(x), Vx e y,Vd €{0,...M —1}; (CS)
M-1
Y= Zl(D =d)Y’; (Observation rule)
d=0

The conditional independence assumption (CIA) implies that there are no features other

than X that jointly influence treatment and potential outcomes (for the values of X that are in

Under the identifying assumption imposed in the next subsection, IATE(m, I, x, 4) is the same for all treatment groups and
does therefore not depend on 4.

We presume that the analyst selects the variables Z prior to estimation. However, the estimated IATEs may be analysed by
methods picking Z in a data-driven way to describe their dependence on certain features. See Section 6 in Lechner (2018)
for more details. Note that Abrevaya, Hsu, and Lieli (2015) and Lee, Okui, and Whang (2017) introduce similar aggregated
parameters that depend on a reduced conditioning set and discuss inference in their specific settings.

To simplify the notation, we take the strongest form of these assumptions. Some parameters are identified under weaker
conditions as well (for details, Imbens, 2000, 2004, or Lechner, 2001).
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the support of interest, ¥ ). The common support (CS) assumption stipulates that for each value
in ¥, there must be the possibility to observe all treatments. The stable-unit-treatment-value

assumption (SUTVA, observation rule, consistency condition) implies that the observed value
of the treatment and the outcome does not depend on the treatment allocation of the other pop-
ulation members (ruling out spillover and treatment scale effects). Usually, to have an interest-
ing interpretation of the effects, it is required that X is not influenced by the treatment (exoge-

neity). In addition to these identifying assumptions, assume that a large random sample of size
N from the random variables Y, D, X, (y,»,xi,di), i=1,...,N, is available and that all necessary

moments of these random variables exist.!

If these assumptions hold, then all IATEs are identified in the sense that they can be
uniquely deduced from expectations of variables that have observable sample realisations (see
Hurwicz, 1950):

IATE(m,l;x,A)=E(Y" -Y'| X =x,D € A)

=EY"-Y'|X=x)
=EY"|X=x,D=m)-EY'|X=x,D=])

=EY|X=x,D=m)-EY|X=x,D=1])
= [ATE(m,[;x); Vxe y,Vm=1e{0,..,M —1}.

Note that the identified IATE does not depend on the conditioning treatment set, A. Since
the distributions used for aggregation, f, ., (%) and Jxpes (%), relate to observable variables

(X, D) only, they are identified as well (under standard regularity conditions). This in turn im-
plies that the GATE and ATE parameters are identified (their dependence on A remains if the

distribution of the features depends on A).

" The identification results will also hold under weights-based and dependent sampling (if the dependence is not too large and
certain additional regularity conditions are imposed), but for simplicity we stick to the i.i.d. case. Higher moments are not
needed for identification but may be required for some theoretical guarantees.
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4  Comprehensive approaches for estimation and inference

In this section, three comprehensive approaches for treatment effect estimation are pre-
sented. In the first two subsections, the underlying principles as well as the concrete estimation
and inference algorithms for Double Machine Learning (dm/) and Generalized Random Forest
(grf) are reviewed. The third subsection focuses on the Modified Causal Forest (mcf). It explains
the idea behind this estimator for the IATE as well as the aggregation steps used to estimate
GATE and ATE. While the basic principles of the mcf are introduced in Lechner (2018), that
paper does not contain explicit theoretical guarantees. Therefore, here we are proving con-
sistency and asymptotic Gaussianity for these parameters. This is followed by an implementa-
tion of weights-based approximate inference as a computationally convenient tool to conduct

inference for all desired aggregation levels.

4.1 Double Machine Learning

dml estimation (Chernozhukov et al., 2018) is based on moment conditions with scores
satisfying the identification condition as well as Neyman-orthogonality, yielding estimators that
are robust to small estimation errors in nuisance parameters (as in Neyman, 1959). A Neyman-
orthogonal score that identifies ATE, GATE, and IATE for treatments 7 and / under assump-

tions outlined in Subsection 3.2 is the DR score of Robins and Rotnitzky (1995):
l//ri’,’;l (0’ em,l ’ nm,l) = FZZ[ (07 77m,1) - em,]

1D =m)(¥ -, (X)) 1D =D - (X))
pu(X) pn(X) ’

an’flll (0777m,1) = lum (X) - lul (X) +

where p,(x) = E(Y|D =d, X = x) s M (X)= (,Um (X), K (X)>pm (X)>P1 (X)) captures the nui-

sance parameters, # represents the treatment effect of interest, and O represents all observable

variables, i.e., O = (X, ¥, D). Noting that the difference of the third and fourth term in this score
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has expectation zero conditional on X, and letting 1 and 6° denote the true value of 7 and 6

respectively, l//m y (00 .05T,,) identifies the different treatment effects:
E (v (030, .1,,)) =0, O, = ATE(m.)),
E(y(0:0) (2).m )|Z =2) =0, 6, (2) = GATE(m,1;2),
E(y (00, ,(x).m )| X =x)=0, 0 ,(x)=IATE(m,;x), forall xe 7.

Effectively, ATE(m,l) is estimated as an average of the estimated component of the DR

score, T4 (0,:73,5” (x,)) . across all observations, i.c.,

m,l

— ) N
ATE™ (n,1) =025 =Y T2 (03747 ()
i=1

This process involves the estimation of nuisance parameters, symbolized as 77, ,( (X)), through

K-fold cross-fitting. This method ensures that for each observation, the corresponding nuisance

parameters are estimated without using that specific observation in their training data. Particu-

larly, the elements of the vector 77, ()(X ) are estimated on K-/ folds not containing the obser-

m,l

vation i, which resides in the left-out fold £. This is indicated by the superscript -k(i).

Neyman-orthogonal scores mitigate regularization bias in the estimation of the ATE for
multiple treatments, provided that the product of the estimation errors for the two nuisance
parameters within each treatment group diminishes at about a JV- rate. This condition, which
many ML methods achieve, allows for flexible estimation of nuisance parameters leading to
ATE estimates robust to small estimation errors in nuisance parameters. The additional combi-
nation with cross-fitting is important to avoid overfitting when estimating the nuisance param-
eters and to subsequently guarantee JN -consistent estimation of the main parameters of inter-
est. For technical details, refer to Chernozhukov et al. (2018). The variance estimator of the dm/
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can be computed as the sample variance of the estimated DR scores following Theorem 3.2 in
Chernozhukov et al. (2018), and Theorem 1, equation (33), and Remark 1 in Bach et al. (2024).
As shown in Theorem 5.1 in Chernozhukov et al. (2018), the estimator reaches the semipara-

metric efficiency bound of Hahn (1998).

Building on the identification result, GATE(m,[;z) can be estimated by regressing

o (a;ﬁ;klm (xi)) on a low-dimensional vector Z of pre-specified variables. Semenova and

1

Chernozhukov (2021) provide statistical inference for the best linear predictor in this case, a
method that is also implemented in Section 5. While for continuous regressors, inference targets
the function, for group indicators it targets the parameters. Standard errors are estimated via
heteroscedasticity-robust standard errors for pointwise and uniform confidence bands and their
asymptotic validity is proven. For continuous regressors, kernel regression offers a viable al-
ternative, enabling the estimation of GATE(m,l;z) and facilitating statistical inference, as

demonstrated in Zimmert and Lechner (2019) and Fan et al. (2022).
In a similar fashion, a natural approach to obtain an estimator of /ATE(m,[;x) is by re-
gressing [ (oi;ﬁ,;f‘l(i ) (xi)) on the features. Foster and Syrgkanis (2023) and Kennedy (2023)

derive error bounds for this two-step procedure. Particularly, the findings in Kennedy (2023)
provide a theoretical foundation for the validity of inferential methods used in this context. In
practical applications, different techniques have been employed: Goller (2023) utilizes linear

regression, while Knaus (2022) opts for a Random Forest approach.

4.2 Generalized Random Forests
grf (Athey et al., 2019) extends the Random Forests into a nonparametric method esti-

mating parameters identifiable by local moment conditions:

E(y* (06" (x),n" (x)|X =x) =0 forall xe 7,
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where ¢/ (-) is a score function identifying the true values of 6(x). As before, n(x) captures

nuisance parameters, §°(x) and 5°(x) are the true values of ¢(x) and n(x), and O represents all
observable variables. This extension notably includes the estimation of heterogeneous treatment

effects based on " (Y, D; 0(x),7(x)) = (¥ = D'0(x)~n(x)) (1 D'), where D isan (M-1)x 1
vector containing dummy variables indicating whether treatment d € {1,...,M —1} was received,

f(x) 1s a parameter vector representing corresponding treatment effects (treatment d vs 0), and
n(x) captures the intercept and all confounders in a single nuisance parameter.'? Note that the

score function in dml is based on a fully nonparametric DR score identifying treatment effects
for all pairwise combinations of treatments, while the score function in grf'stems from a partial
linear model in which only treatment effects with respect to a reference treatment can be iden-
tified. The reference treatment is the one left out from vector D, here the control group with d
= (. This is not too restrictive if effects that are conditioned on the treatment status are not of

interest (as for IATE estimation), because the point estimates of the other treatment combina-

tions can be obtained as 0, ,(x) =0, ((x)—6,,(x).

Building on the /ocal generalized method of moments, grf estimates IATEs, 6(x), as

2

> wE () (0,;0(x),n(x))

i=1

(ég’f (x), ﬁ(x)) € argmin

0(x).m(x)

2

where the weights, wl.g'f ' (x), are obtained from an honest Random Forest whose gradient-based

splitting rule is designed to maximize treatment heterogeneity in the daughter leaves. Honesty
involves a data partitioning strategy to prevent overfitting in the context of Random Forests.
The subsample drawn for each tree is further split into two halves: one for building the tree

structure and the other one for estimating the parameters of interest — in this case, the tree

12 This part is coined as an intercept term c(x) in Athey et al. (2019).
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weights which are aggregated into forest weights. As all observations alter between the two
halves across trees when subsampled, we call this procedure ‘one-sample honesty’. The forest

weights, summing up to 1, can be seen as measure of relevance of the observation i for the

estimation of the local parameters 6(x). Given forest weights w*’ (x), the solution to the given

optimization problem is:

[
Q|
S|

ég’fm:@wf’f(x)(cl - Jo ‘fw)}

o3 (gt

- N . N
where d,, = warf (x)d, and y, = Z w (x)y, (compare with eq. (19) in Athey et al., 2019)).

i=1 i=1

As the splits are chosen to maximize treatment heterogeneity across daughter leaves, to
mitigate confounding effects at early splits, Athey et al. (2019) recommend to partial out effect

of the covariates X on the outcome Y and treatment assignment D and built the forest using

cent

locally centred values y;

1

=y —A(x) and d*" =d. — p$"(x,) for all observations, where
H(x)=E (Y|X = x) and the superscript (-i) denotes that the prediction was done excluding ob-

servation i. The best practice is to estimate x(x) and p,(x), e.g., by K-fold cross-fitting as

mentioned in Athey et al. (2019). The available grf package performs local centring by sub-
tracting out-of-bag predictions'* obtained from regression forests specifically trained to predict
the outcome variable Y and the probabilities of treatment assignment, given the covariates X.
Despite its computational attractiveness, this implementation violates the requirement of com-
plete separation of training and prediction data consistent with the theoretical results. Also, the
simulation results in Section 5 reveal the necessity of K-fold cross-fitting over out-of-bag pre-

dictions for local centring to remove bias.

13 In Athey et al. (2019) out-of-bag predictions are called leave-one-out predictions as the final prediction for observation i
averages predictions that are obtained from trees that did not use observation i for splitting.
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The asymptotic results for i (x) are based on their linear approximation motivated by
the method of influence functions. Athey et al. (2019) prove that the two are coupled and as-
ymptotic properties of one apply to the other. Since the linear approximation can be interpreted
as an estimate of an honest Causal Forest introduced in Wager and Athey (2018), their asymp-
totic result can be applied to establish asymptotic Gaussianity of 6%’ (x), given that g(x) and

n(x) are consistently estimated.'* The linear approximation is also leveraged to derive an esti-

mator of the point-wise standard errors for 6% (x). Derivation of the variance of the linear ap-

proximation yields two terms. One can be consistently estimated by means of regressions. The
other can be seen as an estimate of a regression forest with weights ngrf (x) and the score func-

tion as outcome variable. Athey et al. (2019) propose to estimate this term by a variant of a so-
called bootstrap of little bags. This method was introduced in Sexton and Laake (2009). Athey
et al. (2019) motivate it by the observation that “building confidence intervals via half-sampling
— whereby evaluating an estimator on random halves of the training data to estimate its sam-
pling error — is closely related to the bootstrap (Efron, 1982)”. A computationally efficient
implementation to estimate within one forest, both, the forest weights and the element of the
variance by half-sampling requires drawing for each small bag of trees a random half of the

sample that is available for further subsampling. Honesty additionally requires the trees to be

built on half of the subsample, and the weights W;grf (x) to be computed on the half that was not

used to build the tree. Thus, each W’ d (x) is estimated on approximately a quarter of all the trees

in the forest when the subsampling rate is close to 1.'* Consistent estimation of the two variance

terms yields asymptotically valid confidence intervals for the IATE at point x.

14 This can be achieved, e.g., via honest forests as outlined in Athey et. al (2019) in Theorem 3.
15 Figure A.1 in Appendix A.2 captures the grfprocedure graphically.
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Similarly to dml, grf offers comprehensive estimation of treatment effects at all levels of

granularity. However, unlike dm/, which estimates all effects in two steps by estimating the

o (oi;ﬁ‘k(i) (xi)) first, and subsequently regressing them on features to obtain ATE, GATE

and IATE estimates, grf takes a more direct approach. Specifically, grf estimates IATEs “di-
rectly”, while ATE and GATEs are estimated through additional regressions. The grf package
implements ATE estimation (treatment m vs no treatment) by a variant of the AIPW estimator,

plugging in the estimates from IATE estimation for the nuisance parameters:'®

m,0

— n N
ATE*" (m,0) = 0% = %ng’f (0;377)
i=1

5

[ (039) =6, o (x) +

m’

- l(dl = m)(yi - /&m (x; )
Pa(x)

= Am,O(xi)_I— ~ 1 )l(di :m)[yi_(:[l(xi)_ Z ﬁd(xi)éd,o(xi)J\J'

a X d>0.d#m

This is effectively a dml estimator in which the nuisance parameters were estimated by Random
Forests, and by a weighted moment condition with forest-based weights. Nuisance parameters
should be estimated such that the observation i does not influence the training phase. This is

guaranteed by honesty of the Causal Forest estimating the forest weights and by using K-fold

cross-fitting to estimate ( H(X), Po(X)yeees Py (x)) in the local centring step. To obtain GATE

estimates, ffnr{) (0;;17) are regressed on Z, as in dml. Inference for ATE and GATE is also con-

ducted as in dml.

16 The equations for estimating the ATE are reconstructed from the GRF R package (version 2.3.1). The derivation involves
code implemented in the functions “get scores.R” and “average treatment effect.R”.
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4.3 Modified Causal Forest
4.3.1 Motivation

Lechner (2018) builds on Wager and Athey (2018) and introduces the Modified Causal
Forest estimator, mcf. One of the procedures proposed by Wager and Athey (2018) builds trees
by taking the outcome Y as dependent variable and finding splits that maximize treatment effect
heterogeneity in the daughter leaves under the restriction that each treatment group needs to
have at least a certain number of observations. The tree estimator of an IATE at point x is then
obtained from the final leaf containing x by differencing the average outcomes of the treatment
groups evaluated on the subsample that was not used to build the tree. The forest estimate of an
IATE at point x is calculated as average of all tree estimates. Wager and Athey (2018)
acknowledge that this procedure works well in an experimental design with heterogeneous
treatment effects but may do poorly in the presence of confounding. This observation led to

further extensions addressing the confounding issue.

Formally, grfintroduces local centring inside its Random Forest to remove the confound-
ing effects by a transformation of the data when searching for splits that maximize effect het-
erogeneity. In contrast, mcftakes a different approach. Motivated by the fact that in the presence
of selection bias the difference of the outcome means of treated and controls within all leaves
will not correspond to the means of the true effects, mcf proposes a splitting criterion targeting
the minimisation of the MSE of IATE directly. In addition, a penalty is added penalizing
squared differences between propensity scores. Taken together, the chosen split is predictive

for both Y and the conditional treatment assignment probabilities.

As a motivation for the splitting rule for the mcf, remember that the IATE is also identified

as the difference of two outcome regressions in the different treatment pools:

IATE(m,l;x) = p, (x) = p,(x) ; Vxe y,Vm#1e€{0,.M—1}.
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This estimation task is different from standard ML problems because the two conditional ex-
pectations must be estimated in different, treatment-specific subsamples. Thus, the ML predic-
tion of the difference cannot be directly validated in a holdout sample. Lechner (2018) obtains

the following result for the mean square error of an estimator of the IATE at a given point x:

M%@Em¢m:mﬂmmpM%@mymwﬂ%m@my

where MCE ( (%), i, (x)) =E ( i (x)—u, (x)) ( 4, (x)— 1, (x)) . This derivation of the mean
square error is instructive and is the basis of the mcf as proposed by Lechner (2018). The main
idea is to approximate this term directly. The final splitting criterion is based on the sum of
expected MSEs at a given point x over all unique treatment combinations, i.e., all parameters
are of equal importance:

ME:%%EW%@ﬁmmm.

m=0 l=m+1
For finding splits based on this criterion, the MSE and MCE elements need to be esti-
mated in the daughter leaves. Let N, ;’(X) denote the number of observations with treatment value

d in a certain stratum (leaf) S(x), defined by the values of the features x. Then a ‘natural’ choice

to estimate the MSEs in leaf S(x) is:

— 1 & . 2
MSEsw =—— > 1(x, € S()1(d, =d)($%, - ) -
S(x) i=1

where f{gm is an average of the observed outcomes in treatment d in leaf S(x). To compute the

MCE, the mcf uses the closest neighbour (in terms of similarity w.r.t. x) available in the other

treatment (which is denoted by v ») below)."”

17 Implementational details on finding the closest neighbours for the MCE estimation are in Section B.3.1.
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MCEs)
N

" 1(x, € S (L(d, =m) + 1(d, =) (P2 = Ty ) Py = T )

m !
NS(x) + NS(x) i=1
~ Vi . di =m
Yiim) :{ if

y(i,m) di #m

o~

Analysing the estimated MSE reveals that its minimization in the daughter leaves favours

splits maximizing the differences of all jzgf(_) between the daughter leaves. Additionally, the

splits also favour large differences between jyg, and j/é(,) in the same leaf. In case of binary

treatment, this is equivalent to the sole focus on treatment effect heterogeneity of Wager and
Athey (2018), and Athey et al. (2019) under no selection into treatment. In general, the mcf
splitting approach is only asymptotically equivalent to maximization of treatment effect heter-
ogeneity in case of binary treatment. For multiple treatments, the mcf asymptotically targets
treatment effect heterogeneity across daughter leaves while simultaneously increasing treat-
ment outcome variability within leaves. Overlooking this dual focus may lead to splits that,
while maximizing treatment effect heterogeneity, fail to minimise the sample MSE of parame-
ters within leaves. Thus, mcf utilizes a splitting strategy that jointly considers all treatment com-

binations.

Since inference is important in causal analysis, it is problematic if the MSE-minimal es-
timator has a substantial bias. Although asymptotically confounding should be taken care of by
the splitting rule derived above, the mcf adds a penalty term to the splitting criterion as an ad-
ditional safeguard. As before, denote by S(x’) and S(x’) the values of the features in the daugh-
ter leaves resulting from splitting some parent leaf. Lechner (2018) proposes to add the follow-

ing penalty to a combination of the two ‘final” MSEs in the daughter leaves:

d=0

penalty(x',x")=ﬂ{l—ﬁMZf(P(D:d|XeS(x'))—P(D:d|XeS(x")))2}, A>0.
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The probabilities, local estimates of the propensity score, are estimated as relative shares of the
respective treatments in the potential daughter leaves. The penalty term is zero if the split leads

to a perfect prediction. It reaches its maximum value, 4, when all probabilities are equal. Thus,

the algorithm prefers a split that is also predictive for P(D=d |X =x). Of course, the choice of

the exact form of this penalty function is arbitrary. Furthermore, there is the issue of how to
choose 1 (without expensive additional computations) which is taken up again in Section 5.2.2

which also discusses further improvements via local centring.

4.3.2 Theoretical guarantees for the IATEs

Next, we present the asymptotic properties of the mcf (abstracting from local centring).'s

The plain-vanilla mcf procedure aggregates individual trees 7" into a forest in the follow-

ing way: The data are split into the training set, J,, and honest set, J, , to form two fixed non-

ho ?
overlapping halves of the full data set of sizes N;=N>=N/2. The sampling rates for each tree are

N/ and N’:, 0<B;< B2<1, for the training and honest set respectively, leading to subsample size

s, ~ N oc N for the training set and s, ~ N/ o« N”* for the honest set.!” We name this procedure

‘two-sample honesty’ as honest data will not become training data and vice versa. This honesty
concept underpins the weights-based inference introduced in Lechner (2018), which is covered

in Section 4.3.4 below.

Each tree of the form T(x;¢,3,.,3,,), where & ~ = is a source of auxiliary randomness in

the tree building process (such as random choice of splitting variables), can be used to estimate

IATE(m,[;x). When not important for proofs, ¢ and/or J, and J, will be suppressed in the

o

notation for better readability. mcf'is an average over B trees:

18 More details of the assumptions needed as well as the formal proofs are contained in Appendix A.1.

Y9 If N is an odd number, one of the two subsamples will contain one observation more than the other one without any
consequences. Note also that the dependence of the subsample sizes s; and s2 on N is suppressed in most of the following
notation.
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1 < o~ ~
F(x;3 ,,, :EZT(X;gtb"str,b"sho,b)’
bh=1

where J_, and 3, , are drawn without replacement from J, and J,, at subsampling rates f; and

B2, respectively. &, is a random draw from = . The b subscript will be supressed when it will

not lead to any confusion. Like in Wager and Athey (2018), the trees 7 need to be honest, as
defined in Definition 1:
DEFINITION 1 A tree grown on a training sample 3, is honest if the tree does not use the

~

responses Y from the honest sample J, , to place its splits.

Honesty is crucial for inference and to bound the bias of the mcf. The splitting and sub-
sampling procedure described above guarantees that the trees are honest. The main difference
to the definition of honesty of Wager and Athey (2018) and Athey at al. (2019) is the reverse
order of steps. Wager and Athey (2018) first subsample and then split the data for their double-
sample trees. Here, the data set is split first and then the training and honest sets are subsampled
from the given split. This allows to better control bias and variance rates as the size of the
training set will codetermine the size of the final leaves translating into bias and the size of the

honest set will influence the variance rate.

To guarantee consistency, the final leaves must asymptotically shrink in all dimensions
similarly as in Meinshausen (2006) and Wager and Athey (2018), invoking the following

definition of random-split tree:
DEFINITION 2 A tree is considered a random-split tree if at every splitting step, marginalizing
over ¢, there is a guaranteed minimum probability 7 / p that the next split occurs along

the u-th feature for some 0 <7 <1, forall u=1,....,p.

There are several options how to obtain a random-split tree. For the strategy implemented in
mcf, see Appendix B.3.1.
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The following Definition 3 controls the shape of the leaves. Definition 4 imposes sym-

metry. Both are required to derive the asymptotic results.

DEFINITION 3 A tree predictor grown by recursive partitioning is (a,v) -regular for some

a >0 if (1) each split leaves at least a fraction a of the available training examples of
each treatment on each side of the split, (2) the leaf containing x has at least v observa-
tions from each of the M treatment groups for some v e N, and (3) the leaf containing x

has at least one treatment with less than 2v—1 observations.

Regarding the role of the splitting rule on (a,v) -regularity, the algorithm first determines splits

that do not violate the regularity condition. For these, the splitting criterion is calculated and
the split that achieves the minimum value of the objective function is chosen as the best one.
By following this procedure, any influence of the splitting criterion (including the penalty) on

the regularity of the final leaves can be ruled out.

DEFINITION 4 A predictor is symmetric if the output of the predictor does not depend on the

order in which the observations are indexed in the training and honest samples.

Consider B trees satisfying Definitions 1-4, that training and honest data are obtained

from a two-sample honesty procedure, and let é:ff (x) denote an mcf estimator of IATE(m,/;x)

obtained as

‘ Ae 1 & & e G e
]ATEmLf(m,l;x) = ef;mlf(x) =EZZWf,ff(di,xi;x,m,l)yi :Zwimcf(diﬁxi;x:mal)yi )

b=1 i=1 i=1

1(d;=m) 1(d =)
m 1
NS/) (x) NS/; (x)

where W, (d.,x,;x,m,l) =£ ]l(xi € §,(x)) represent the weights for the

IATE estimate in tree b. This estimator is differencing the average outcomes of the treatment

groups evaluated on the honest subsample in the tree leaf containing point x, §,(x). Averaging
across trees allows for a weighted representation of the IATE forest estimator with forest
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mef

, 1 & .
weights W' (d,.,xi;X,M,l)=EZWi7b (d,,x;x,m,l). Both forest weights w"(x) and
b=1

wl.’”cf (d,,x;x,m,l) represent how important observation i is for estimation of any quantity at point

x. Meanwhile, the mcf weights weigh the observed outcome directly, grf applies the forest

weights in a locally weighted moment function. Thus, a weighted representation of the final grf’
estimate of the IATE at point x weighs the observed outcome y; by weights that combine wl.g”f (x)

with treatment assignments in a non-linear fashion (see the result in Subsection 4.2).

A further difference between the grf'and the mcfis related to the number of forest weights
used in the IATE estimator and how many trees contribute to the calculation of each weight.
Both are determined by the corresponding honesty procedures. Subsection 4.2 summarizes that
the grf forest weights represent how much each observation is relevant for IATE(m,l;x). This
means that there will be N estimated forest weights because each half-sample is drawn from the
full sample. For large enough B, each observation has a chance to end up in the honest sample

on which the weights are estimated. However, the half-sampling and further honesty split lead
every forest weight Wfrf | (x) to be based on approximately B/4 trees. On the other hand, mcf

estimates only /2 of forest weights due to the primary half-split of data into training and honest
data set. However, since the same N/2 observations are used in each tree to estimate the weights
for =1, each forest weight is averaged across all B trees.? For a given B and N, grf has an
advantage in smoothing over more observations and mcf'in the precision of the weights, poten-

tially influencing finite sample properties of both methods.

Given these concepts, we state the main theorems guaranteeing consistency and asymp-
totic Gaussianity of the mcf IATE estimator. Further assumptions necessary for achieving this

asymptotic distribution in the case of i.i.d. sampling are (i) Lipschitz continuity of first and

20 See Figure A.1 in Appendix A.2 for graphical representation.
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second order moments of the outcome variable conditional on the features, (i1) using subsam-
pling to obtain the training data for tree building (subsamples should increase with N, slower
than N, but not too slow), and (iii) conditions on the features (independent, continuous with
bounded support, p is fixed, i.e. low-dimensional). All proofs are collected in the Appendix
A.1. Each section in this appendix contains all the necessary proofs and intermediate results for
the corresponding main theorem. One of the main differences to the proofs in Wager and Athey
(2018) is the different splitting and subsampling approach to achieve honesty. The Causal For-
est estimator in Wager and Athey (2018) approximates a U-statistic. Thus, their proofs are based
on the corresponding Gaussian theory. Since the mcf allows for f,=1, the estimator cannot be
generally interpreted as a U-statistic and so the results in Wager and Athey (2018) do not apply.
Instead, the weighted representation of the forest estimate is leveraged to obtain asymptotic

properties that also cover the case of f>=1.
The first result is the bound on the bias of the forest. The proof is like the proof in Wager

and Athey (2018). In the first step, we show that the leaves get small in volume as the S| gets

large. In the second step, we show that the honest observations in the final leaf can be seen as
a subset of nearest neighbours around the point X. Thus, their expected distance and Lipschitz
continuity help to bound the bias. Lemma 1 in Appendix A.1.1 gives rates at which the Lebes-
gue measure of final leaves in a regular, random-split tree shrinks under the assumption of the

features being independent from each other and uniformly distributed.

THEOREM 1 In addition to the conditions of Lemma 1 (regular, random-split trees and inde-
pendent uniformly distributed features), suppose that trees 7 are honest and all

E (Y" | X = x) are Lipschitz continuous. Then, the absolute bias of the mcf IATE esti-

mator at a given value of X is bounded by

£ (02 ()=, (0| = O o)
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Note that the bias rate of the forest is the same as the bias rate of a single tree, as a forest
prediction is the average of tree predictions. The bias rate is mainly driven by the shrinkage of
the Lebesgue measure of the leaf that is influenced by the choice of parameter a. The upper
bound in Theorem 1 resembles the bias rate of nearest-neighbours regression estimators under
Lipschitz continuity in a p-dimensional leaf that shrinks at a rate of (1-a). This stems from the
fact that the final leaves can be bounded by balls that shrink at the same rate as the final leaves
as shown in the proofin the Appendix A.1.1. Note that this rate is rather conservative as it stems
from bounding the shallowest leaf with a leaf that would always end up with a (1-a) share of
observations at the same level of depth. The rate is faster than in Wager and Athey (2018)
because we bound by the expected distance between the nearest neighbours and the point x
instead of the longest expected diameter of the leaf.

The second result is the asymptotic distribution of the IATE estimate at point x.

THEOREM 2 Assume that there is a sample of size N containing i.i.d. data

(X,.Y,D)e[0,1]" xRx{0,1,..,M —1} for a given value of x. Moreover, features are

independently and uniformly distributed X, ~ U([O,l]" ) Let T be an honest, regular,

and symmetric random-split tree. Further assume that E (Y d|X =x) and

E((Yd)2|X =x) are Lipschitz continuous and Var(Y d|X =x)>0. Then for

5<p <p_+210g(1—0£)
T p o logla)

B

0 (x)- 6., (x)

m

Var (émcf ' (x))

m,l

5 N(0,1).

The restrictions on the sampling rates require that (2+p) log(1-a) / (p log(a)) >1. This
means that o needs to be set closer and closer to 0.5 for larger p. This is a consequence of the

curse of dimensionality as values of a closer to 0.5 make sure that the shallowest final leaves
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get tighter upper bounds ensuring that the bias vanishes fast enough. Additionally, the relation-
ship between the subsampling rates further ensures that the final leaf does not end up with too
many honest observations and the squared bias—variance ratio converges to 0. The convergence
of the bias-variance ratio to 0 together with a side result of the variance converging to 0 guar-

antees the consistency of the mcf IATE estimator as captured in the following corollary.

COROLLARY 2 Let all assumptions from Theorem 2 hold. Then, é,;"if (x)—L>0) (x).

4.3.3 GATE and ATE estimation
Estimates for GATEs and ATE are obtained by averaging the IATEs in the respective

subsamples defined by z (assuming discrete Z) and A. Although estimating ATEs and GATEs
directly instead of aggregating IATEs could lead to more efficient estimators (see Section 4.1
and 4.2), the computational burden would also be higher, in particular if the number of GATEs
of interest is large, as is common in many empirical studies. Furthermore, there is no guarantee

that the results are internally consistent, i.e., the respective averages of the IATEs are indeed

close to their ATE and GATE counterparts. Therefore, letting é”“f(x) be an estimator of

m,l

IATE(m,I;x) , the mcf estimates GATEs and ATEs as appropriate averages of éjjf (x)s:

1

z,A
2

N, _
= wW'd;z,m, 1, A)y;;
i=1
1 N2 NZ
— > 1z, =z.d, e MW (d;x,,mI);  Ny* =2 1(z,=zd, €A

2 Jj=l i=l

GATE" (m,I;z,A) = 0" (z,A) =

m,l

N, R
1(z,=2z,d, A)H;’jf (x;)
i=1

waf(di;z,m,l,A) =

. . N, o
ATE™ (m,1;0) = 07 () = ﬁzm e M0 (x,)

2 =l

Ny
=> W' (m,1,A)y,;

i=1

mc, 1 Nz mc, Nz
w" (m,1,A) :le(df e A" (d;;x,,m,I); N) = ;l(d,. eA).
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These expressions show that ATEs and GATEs have the same weights-based representa-

tion as the IATEs. Hence, asymptotic Gaussianity can be established in a similar way.

THEOREM 3 Let all assumptions of Theorem 2 hold. Then,

Onl (8)=6,,(A)

[Var (G2 ()

Utilizing the same Central Limit Theorem for triangular arrays as in Theorem 3 and applying

45 N(0,1).

similar steps as in Theorem 1 to show that the bias-variance ratio converges to 0 yields the

following corollary:
COROLLARY 3 Let all assumptions from Theorem 2 hold. Then,

0" (2,0)-8" (2, A)

<5 N(0,1).
\/Var 9"’“ (z, A)

4.3.4 Inference

There are several suggestions in the literature on how to conduct inference and how to
compute standard errors of Random Forest based predictions (e.g., Wager, Hastie, and Efron,
2014; Wager and Athey, 2018; and the references therein). Although these methods can be used
to conduct inference on the IATEs, it is yet unexplored how these methods could be readily

generalized to take account of the aggregation steps needed for the GATE and ATE parameters.

Therefore, the mcf uses an alternative inference method useful for estimators that have a
representation as weighted averages of the observed outcome. This perspective is attractive for
Random Forest based estimators as they consist of trees that first stratify the data (when build-
ing a tree), and subsequently average over these strata (when building the forest). Thus, the mcf
exploits the weights-based representation explicitly for inference (see also Abadie and Imbens,

2006, for a related approach).
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Considering a weights-based estimator with random weights 7 (that are normalized such

that all weights add up to N) for 4 (i.e., IATEs, GATESs, or ATEs):

~ 1 & . N
HZWZW"K; Var(&)zVar(%ZWiYij.

i=l1

The variance of the estimator can be rewritten as:

i=1

2| By [ 2, 00 v, 3 i 00

where 14, W)=EX,|W,) and O';‘W (W.)=Var(Y,|W.) . The derivation exploits the combina-

tion of two-sample honesty with an i.i.d sample. Remember that under two-sample honesty,
observations can be either used for training or for estimation, without switching the roles.?!
Further recall that the mcf forest weights are computed as a function of training data determining
the final leaves and value x; picks the corresponding weight, leading to the following represen-

tation: W, =w(x;,S, ). Therefore, under 1.i.d. sampling, Y; and W; are independent. Thus, the

conditioning set W,,...,W; can be reduced to W, for each conditional mean and conditional

variance.

This leads to the following expression of the variance of the proposed estimators:??

NZ
Var ZWY = ZW w W) |+Var, NLZWMW(W,.).
2 i=1 2 i=1 2 =l

The above expression suggests using the following estimator:

21" In contrast, the ‘one-sample honesty” in Wager and Athey (2018) is based on continuously switching the role of observations
used for tree building and effect estimation in their Causal Forest. Under this splitting procedure, each weight may still
depend on many observations, and the conditioning set cannot be reduced as in the case of two-sample honesty.

22 Note that the weighting estimator uses only the honest data, therefore the weights here sum up to No.
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The conditional expectations and variances may be computed by standard non-parametric
or ML methods, as this is a one-dimensional problem for which many well-established estima-
tors exist. Bodory, Camponovo, Huber, and Lechner (2020) investigate f-nearest neighbour

estimators to obtain estimates for these quantities. They found good results in a binary treatment

2

i » AT€ bounded and

setting for the ATET. The same method is used here.?* As both, i and o

the number of nearest neighbours in their estimation is chosen such that it grows slower than
N> (as documented in the Appendix A.2), consistency of the conditional expectations is guar-
anteed, see, e.g., Devroye, Gyorfi, Krzyzak, and Lugosi (1994). Additionally, for larger N the
non-zero weights concentrate at a close neighbourhood of the given point x as the leaves are
shrinking towards 0. It is, however, beyond the scope of this paper to analyse rigorously the

exact statistical conditions needed for this estimator to lead to valid inference.

5 Monte Carlo study

5.1 Concept

In this section, we compare the finite-sample performance of various advanced causal
machine learning methodologies in estimating average effects across three specified aggrega-
tion levels. This comparison includes evaluating both the precision of point estimates and the

robustness of inference procedures.

There are primarily two methodologies for such comparisons. A prevalent method in the

machine learning field involves using established benchmark datasets to assess the performance

23 They also found a considerable robustness on how exactly to compute the conditional means and variances. Note that since
their results relate to aggregate treatment effect parameters, their generalisability to the level of IATE’s is unclear.
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of different estimators.?* Although this method has been adapted for causal analysis,? it typi-
cally falls short in evaluating inference procedures without additional modifications. Conse-
quently, we adopt an alternative strategy, employing a Monte Carlo simulation approach. This
involves the repeated generation of synthetic data, allowing for extensive variability in the data

generating process (DGP).

In executing this Monte Carlo approach, we meticulously construct artificial datasets,
varying numerous elements of the DGP. These elements include the degree of selectivity, the
type and quantity of covariates, sample size, diverse functional forms, varying degrees of effect
heterogeneity, the influence of covariates on outcomes and heterogeneity, the share of treated
within the sample, and the number of treatments.?* Despite its significant computational de-
mands, this approach offers a comprehensive exploration of various scenarios, surpassing the
more limited scope of Monte Carlo studies typically employed in papers introducing a new

methodology.

The subsequent subsection provides a concise overview of the simulation designs’ com-
ponents. The fundamental procedure involves initially generating random data, applying the
different estimators to this training dataset, predicting effects on a separate dataset of equivalent
size derived from the same DGP, recording the outcomes, and repeating these steps R times.
After this process, we calculate a range of performance metrics that capture different dimen-

sions of the accuracy and reliability of both estimation and inference processes.

24 Typical repositories to find such data sets are for example the UC Irvine Machine Learning Repository

(http://archive.ics.uci.edu/) or Kaggle (www.kaggle.com/datasets).

25 See for example the data sets of Atlantic Causal Inference Conference 2019 challenge (sites.google.com/view/

acic2019datachallenge/).
26 Table B.2 in Appendix B.2.5 gives the list of the scenarios investigated and Appendix C collects the tables that contain the

corresponding results.
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5.2 Key features of the simulation study
5.2.1 Data Generating Process

The simulated (i.i.d.) data consist of the covariates, the treatment, and the potential out-
comes. The simulation of these components will be discussed in turn (for additional details see

Appendix B).

The simulation involves generating a range of 10 to 50 independent covariates (p=10, 20,
50). These covariates are normally (p"), uniformly (pV), or binomially (dummy variables, p?)
distributed, or as combinations of the three types (p= p™+ pV + p”). Among these p covariates,
the first k covariates (where k = k¥ + kY + kP) influence both the selection into treatment and
the potential outcomes. The effect of these k covariates is modelled to decrease linearly, ranging
from 1 to 1/k. The base specification consists of 20 covariates (p"= pU=10, p”=0) with half of

them (in each category) relevant (k"= kV=5).77

The selection process is based on a linear index function of the & relevant covariates plus
noise. The quantiles of this index function are used to generate the treatments. The base speci-
fication considers cases with random selection (experiment), medium selection (true R? of about
10%), and strong selection (true R’ of about 42%). Cases of 2 and 4 treatments with equal as
well as asymmetric treatment shares are considered. The base specification consists of 2 treat-

ments with equal treatment shares.

The non-treatment potential outcomes are obtained by simulating the expected non-treat-
ment potential outcome as a sine-function of the linear index of the covariates plus noise. The
relevance of the sine-function relative to the noise level is varied in the simulations from cases

with true R of 0 to 45% (base specification: 10%). The potential treatment outcomes are ob-

27 When covariates are simulated from both, the normal and uniform distributions, the 1%, 34, 5t .. covariates are drawn

from the uniform distribution.
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tained by adding simulated IATEs plus noise to the expected non-treatment potential out-
comes.?® The IATEs are generated as functions of the linear index or as a step function of the
first two, most important, covariates. In the former case, a linear function, a logistic function,
and a quadratic function is specified. Finally, the step function approach follows closely the
specification of Wager and Athey (2018). In all these cases the ATE is close to one. The case
of zero IATEs, and thus zero ATE, is considered as well. The specification of the IATE as step
function is used in the base scenario presented in Section 5.3. Figure 1 shows the expected and
realised potential outcomes and their relation to the linear index. Thus, it summarizes main
properties of the main base specification, as well as of the linear specification of the IATE.

Similar plots for the other specifications can be found in Appendix B.2.4.

Figure 1: Shape of potential outcomes for different shapes of IATEs (base scenario)
Linear IATE(x) Step function for IATE(x)

Potential outcomes Potential outcomes

Effect
Effect

-7 1 -2 1

—4 —4 4

K * beta K * beta

Note: Figures are based on 1°000’000 observations.

The GATEs depend only on the first covariate, which is uniformly distributed if there are
uniformly as well as normally distributed covariates in the DGP. This continuous covariate is
split in groups with the same expected sizes and corresponding indicator variables are created.
Thus, these dummy variables have no direct effect on the DGP. They are passed to the GATE

estimators.

28 The 2 (2 treatments) or 4 noise terms (4 treatments) used to simulate potential outcomes are independent of each other.
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A final aspect of the DGP is the sample size. We mainly consider sample sizes of 2’500
and 10’000 as compromise between computational costs and practical relevance.? To keep the
noise from the simulations on the performance measures stable (at least for the estimators of
ATE and GATEs, which can be expected to show /v -convergence), the number of replica-
tions, R, declines at the same rate as the sample increases. Thus, the results for N=2"500 are

based on R=1’°000, while R declines to 250 for N=10"000.

In our simulation study, it's crucial to highlight that we adopt a methodology designed to
replicate repeated sampling inference more closely, especially in scenarios involving stochastic
covariates. To achieve this, the samples used for computing the out-of-training-sample effects
are freshly drawn from the same Data Generating Process (DGP) for each replication. Addi-
tionally, these samples are matched in size to the training sample. This approach contrasts with
the method used in Knaus et al. (2021), where the sample for calculating effects is drawn once
prior to the initial replication and remains constant across subsequent replications, even when

similar DGPs are employed.

The methodology chosen for our study, however, comes with certain trade-offs. Notably,
for each Individual Average Treatment Effect (IATE) as a function of covariate values
(IATE(x)), there exists only a single true and estimated value across all replications. This
uniqueness arises because all or some covariates are continuous, leading to a scenario where
each specific covariate value appears only once in the simulations. Consequently, this aspect of
our methodology precludes the possibility of estimating higher-order moments for the IATEs.
This is an important consideration to bear in mind when interpreting the results and the applica-

bility of our findings.

29 N=40’000 is also considered, but, for computational reasons, only for one specification.
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5.2.2 Estimators

In the main part of the paper, we present the results of the Modified Causal Forest and the
Generalized Random Forest, both with the outcome variable centred prior to estimation, mcf-
cent and grf-cent, as well as of Double/debiased Machine Learning with normalized weights,
dml-norm. For IATE estimation, we also include a more efficient version of the centred mcf,
mcf-cent-eff, in the main part. The tables in Appendix C contain additional results for the un-
centred mcf and grf, standard (non-normalized) dm/, and OLS. We describe the implementation
of these estimators briefly in this section and refer the interested reader to Appendix B.3 for

details.

While Appendix B.3.1 details the implementation of the mcf further, at least 2 points merit
some more discussion. The first point concerns the penalty parameter, A. In the simulations, A
is set equal to Var(Y). Var(Y) corresponds to the MSE when the effects are estimated by the
sample mean without any splits. Thus, it provides some ad-hoc benchmark for plausible values
of A. In small-scale experiments with different values of A, the MSE shows little sensitivity for
values half and twice the size of Var(Y). Generally, decreasing the penalty increases biases and
reduces variances, et vice versa. The simulations below will show that biases are more likely to
occur when selection is strong. Thus, if a priori knowledge about the importance of selectivity

is available, then the researcher might adjust the penalty term accordingly.

Secondly, if inference is not a priority, like when using the IATEs as inputs into the train-
ing of an optimal assignment algorithm, the efficiency loss inherent in the mcf's two-sample
honesty approach can be avoided by cross-fitting, i.e., by repeating the estimation with ex-
changed roles of the two samples and averaging the two (or more) estimates. However, in such
a case it is unclear how to compute the weights-based inference for the averaged estimator mcf-

cent-eff as the two components of this average are correlated.’® A similar efficiency loss can be

30 For such a cross-fitted estimator (e.g., computed as mean of the single estimators), conservative inference could be obtained
by basing inference on normality with a variance taken as average over the variances of the single estimations.
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avoided in the grf procedure by switching off the half-sampling when inference is not relevant.

However, the current implementation in the grf package does not support this option.

As mentioned in Section 4.2, grf performs local centring inside the Random Forest to
remove confounding bias. The default grf local centring, labelled here as uncentered, refers to
local centring that uses out-of-bag predictions of the outcome and treatment assignment from
Random Forests trained on the full sample, to calculate the residuals. The simulation study
includes an additional local centring strategy, labelled as centred. The difference between the
centred and the uncentered mcf and grfis that the former uses a transformed outcome variable.
This transformation subtracts a Random Forest prediction of E£(Y|X) from the observed Y (ob-

tained with 5-fold-cross-fitting), and thus purges them from much of the influence of X. 3!

The grf GATEs and ATE are estimated via linear regression in which a variant of a local
AIPW estimator is regressed on group indicators or a constant. The GATE variance estimator

exploits the knowledge of a homoscedastic error term.

Compared to the standard dm/, the normalized dm!/ is more robust to extreme values of
the estimated propensity score. It is obtained by normalizing the weights that are implicit in the
dml scores. While it is straightforward to use dml for ATE, it is less straightforward to use them
for heterogeneity estimation. Here, GATEs and IATEs are obtained by regression-type ap-
proaches in which the estimated components of the dm! scores serve as dependent variable. The
GATEs are obtained as OLS-coefficients of a saturated regression model with the indicators for
the groups defined by the discrete variable Z as independent variables. IATEs are computed by
using X as independent variables either in a regression Random Forest or in an OLS regression.
When OLS is used, inference is based on the heteroscedasticity-robust covariance matrix of the

corresponding coefficients. No inference is obtained for the Random Forest based IATEs.

31 Note that the grfpackage does not provide centring of this kind. We added this estimator as the original version used in the
grfpackage performed poorly in many of our DGPs for reasons discussed in Section 4.2.
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All estimators are not tuned as computational costs would be prohibitive given the already
extensive simulations. Instead, default values, as provided in the respective software packages,

are used.

5.2.3 Performance measures

The main performance measures are the biases of the effects and their standard errors, the
standard deviation of the effects, the mean absolute error, and the root mean squared error
(RMSE) of the effects. The coverage probability (CovP) is reported to gauge the quality of the
inference. It is presented at the 80% level since the limited number of replications for the larger
sample leads to substantial simulation noise for, e.g., the more conventional 95% confidence

interval.3?

Note that, as mentioned above, the standard deviation, and thus the bias of the estimated

standard error, cannot be computed for the IATE due to the simulation design.

Whenever several parameters are involved (as for the GATEs and IATEs), the perfor-

mance measures are computed for each parameter and then averaged.

5.3 Results

In this subsection, we analyse dm/-norm, grf-cent, and mcf-cent (when there is no confu-
sion, in this subsection, we will drop the -norm and -cent ending) for the base Data Generating
Processes (DGPs) and sample sizes of N=2,500 and N=10,000. Additionally, the degree of se-
lectivity within the data is varied to investigate. Concerning the asymptotic ordering of the es-
timators, dm/ and grf are efficient for the ATE and the GATEs (as they are based on a discrete
variable with few values). For the IATE:s, to the best of our knowledge, no asymptotic ordering

is possible (at least when there are continuous covariates).

32 In addition to CovP for the 95% interval, the tables in the appendix also report the skewness and excess kurtosis of the
estimators, which are, however, in a large majority of cases in the ‘normal’, unproblematic ranges.
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Since it turned out that the relative performance of the estimators does not only depend
on the strength of selection into treatment, but also on the specific parameter to be estimated,

the results for the ATE, the GATEs, and the IATESs are discussed in turn.

5.3.1 Average treatment effects

Table 2 shows the results for the ATE. If there is no selectivity, like in an experiment, we
obtain the expected results: the efficient estimators, dm/ and grf, are similar and outperform the
mcf, at least when selection is not too strong. All estimators are essentially unbiased, and em-
pirical coverage is close to the nominal 80% level. Furthermore, when the sample size quadru-

ples, the standard deviation and RMSE halve, which is indicative of /¥ -convergence.

The analysis reveals a notable trend with increasing selectivity: the performance of the
normalized double/debiased machine learning (dml-norm) estimator deteriorates, particularly
in terms of bias. This leads to a large increase in the RMSE. One plausible explanation is that
(despite the normalisation) the double-robust score becomes more problematic when propensity
score values become more extreme. A similar increase in bias is visible for the grf, although it
is not as extreme as for dml. The resulting bias impacts also their coverage rates, which fall to

very low levels. These issues appear to a much lesser extent for the mcf.

One summary coming from this table is that mcf appears to be more robust to stronger
selectivity at the cost of some additional RMSE when selectivity does not matter much. The
results in Appendix C.1 show that these performance patterns with respect to the degree of
selectivity also appear for linear IATEs and non-linear IATEs. However, in the case of quadratic
IATE:s it turns out that the uncentered (!) grf outperforms the centred grf'in terms of bias even

for strong selectivity.

Fixing selectivity to medium levels and varying the other parameters of the DGP (Appen-
dix C.2), suggests that the patterns observed in Table 2 qualitatively appear almost in all other

DGPs as well. The most remarkable case is when covariates are more important for the non-
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treatment potential outcome (Table C.17, Table C.21): all estimators become biased, which

increases the RMSE and leads to coverage far below nominal levels.

Table 2: Simulation results for average treatment effect (ATEs)

Estimation of effects Inference

Estimator Selec- Sample Bias Mean  Std.dev. RMSE  Bias (SE) CovP

tivity size absolute (80) in
error %
(1) (2) (3) (4) (5) (6) (7) (8) (9)
dml-norm None 2’500 -0.002 0.034 0.043 0.043 0.005 84
grf-cent 0.003 0.033 0.042 0.042 0.000 80
mcf-cent 0.003 0.048 0.061 0.061 -0.001 78
dmli-norm Med- 2’500 0.020 0.040 0.045 0.050 0.004 78
grf-cent ium 0.037 0.046 0.042 0.056 -0.000 64
mcf-cent 0.037 0.057 0.061 0.072 0.000 72
dml-norm Strong 2’500 0.140 0.140 0.056 0.150 0.002 13
grf-cent 0.090 0.091 0.046 0.101 -0.006 20
mcf-cent 0.046 0.060 0.058 0.074 0.008 72
dmli-norm None 10’000 0.000 0.016 0.020 0.020 0.003 85
grf-cent 0.002 0.017 0.021 0.021 0.000 79
mcf-cent 0.004 0.022 0.028 0.028 0.002 81
dmli-norm Med- 10’000 0.010 0.019 0.022 0.024 0.003 82
grf-cent ium 0.015 0.022 0.022 0.027 -0.001 69
mcf-cent 0.014 0.025 0.027 0.030 0.003 82
dmli-norm Strong 10’000 0.079 0.079 0.032 0.085 0.000 12
grf-cent 0.042 0.044 0.027 0.050 -0.006 27
mcf-cent -0.013 0.025 0.028 0.031 0.007 86

Note: ~ RMSE abbreviates the Root Mean Squared Error. CovP (80) denotes the (average) probability that the true value is
part of the estimated 80% confidence interval. 1000 / 250 replications are used for 2’500 / 10°000 observations.

5.3.2 Conditional average treatment effects with a small number of groups (GATESs)

Table 3 shows that the relative performance of the different estimators for the GATEs
depends not only on the strength of selectivity, but also on the number of groups for which a
GATE is computed for. Table 3 shows the results for the cases of 5 and 40 groups, while Tables

C.28 to C.30 in Appendix C.2 show the intermediate cases of 10 and 20 groups as well.

Concerning the point estimate, mcf outperforms grf and dml once there are 10 and more
(N=2500) or 20 and more groups (N=10000), independent of the strength of selectivity. It is
not surprising that mcf performs better for strong selectivity: the previous section showed that

for strong selectivity the mcf dominates even for a GATE with only one group, i.e., the ATE.
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Table 3: Simulation results for group average treatment effects (GATE)

Estimation of effects Inference

Estimator Selec- Sample Bias Mean  Std.dev. RMSE  Bias (SE) CovP

tivity size absolute (80) in
error %
(1) (2) (3) (4) (5) (6) (7) (8) (9)

5 Groups
dmli-norm None 2’500 -0.002 0.075 0.094 0.094 0.002 80
grf-cent 0.004 0.075 0.094 0.094 0.000 80
mcf-cent 0.002 0.090 0.091 0.114 -0.010 64
dmli-norm Med- 2’500 0.020 0.081 0.081 0.101 0.001 79
grf-cent ium 0.037 0.081 0.093 0.102 -0.000 76
mcf-cent 0.037 0.094 0.090 0.121 -0.006 65
dml-norm Strong 2’500 0.140 0.157 0.123 0.187 -0.005 52
grf-cent 0.090 0.119 0.096 0.148 -0.007 56
mcf-cent 0.046 0.112 0.085 0.146 0.009 62
dmli-norm None 10’000 -0.001 0.037 0.046 0.046 0.001 82
grf-cent 0.002 0.036 0.046 0.046 0.001 80
mcf-cent 0.004 0.045 0.045 0.058 -0.002 68
dmli-norm Med- 10’000 0.010 0.041 0.050 0.051 0.000 80
grf-cent ium 0.016 0.041 0.048 0.051 -0.001 75
mcf-cent 0.013 0.049 0.045 0.063 0.004 69
dmli-norm Strong 10’000 0.078 0.090 0.073 0.108 -0.007 49
grf-cent 0.043 0.063 0.051 0.080 -0.006 56
mcf-cent -0.014 0.085 0.045 0.100 0.007 41
40 Groups

dmli-norm None 2’500 -0.002 0.214 0.268 0.269 -0.003 79
grf-cent 0.004 0.213 0.269 0.269 -0.001 80
mcf-cent 0.002 0.096 0.096 0.120 -0.013 62
dmli-norm Med- 2’500 0.020 0.226 0.283 0.284 -0.005 79
grf-cent ium 0.037 0.213 0.265 0.268 -0.001 79
mcf-cent 0.036 0.099 0.095 0.128 -0.008 64
dmli-norm Strong 2’500 0.140 0.293 0.338 0.367 -0.020 71
grf-cent 0.090 0.223 0.255 0.280 -0.003 75
mcf-cent 0.043 0.119 0.090 0.153 0.007 61
dmli-norm None 10’000 -0.001 0.106 0.132 0.132 0.000 80
grf-cent 0.002 0.104 0.130 0.130 0.002 80
mcf-cent 0.004 0.050 0.050 0.063 -0.005 64
dmli-norm Med- 10’000 0.010 0.113 0.140 0.141 -0.001 79
grf-cent ium 0.016 0.106 0.131 0.132 0.000 79
mcf-cent 0.012 0.055 0.051 0.069 -0.002 64
dmli-norm Strong 10’000 0.079 0.164 0.192 0.209 -0.015 71
grf-cent 0.043 0.115 0.130 0.145 -0.002 74
mcf-cent -0.016 0.091 0.050 0.104 0.005 37

Note:  RMSE abbreviates the Root Mean Squared Error. CovP (80) denotes the (average) probability that the true value is
part of the estimated 80% confidence interval. 1°000 / 250 replications are used for 2'500 / 10’000 observations.

We observe a differential dependence of the standard deviation on the number of groups:

its increase is much slower for the mcf than for dm/ and grf. The reason is the way the GATE
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estimators are constructed by the different methods. As mentioned above, dm/ and grf are av-
eraging double-robust scores within the cells of the discrete Z. Since the estimators are N -
convergent, we expect that when the sample is reduced to one quarter of the original sample,
the standard deviations of such estimators double. As the cells defined by the group variable in
the DGPs are of approximately equal size, the number of groups and observations per group
are inverse proportionally related. The resulting doubling of the standard deviation of the grf
and dml estimators is exactly what is observed in Tables C.28 to C.30 when comparing results

for 5 vs. 20 groups, or 10 vs. 40 groups, respectively.

The mcfaggregates IATEs within these cells. However, as the IATEs also use honest data
outside of these cells, the standard deviation of the mcf increases much slower than for grf'and
dml.> In fact, we observe that when the number of groups increases further, the RMSE of the
mcf approaches the one of the mcfIATEs from below, while the RMSE of dm/ and grfincreases
substantially and sometimes exceeds the RMSE of the IATEs which are of much higher dimen-

sion.

Concerning inference, the findings are a bit more pronounced: dm/ and grf have the cor-
rect coverage rates for no and medium selectivity even for 40 groups, while the coverage rates
for mcf are too low. The figures contained at the end of Tables C.28, C.29, and C.30 in Appendix
C indicate that this problem comes mainly from a bias of the GATEs with the smallest true
values, while for the other GATEs coverage is close to the nominal level. In fact, the good
performance in terms of RMSE and the problems with coverage are two sides of the same coin.

Due to their aggregation from IATEs that are averaged over trees, mcf estimates share the

33 The aggregation of IATEs that weigh information from observations belonging to other groups into a GATE resembles
smoothing across (adjacent) categories in the context of categorical regressors. Heiler and Mareckova (2021) showed that
optimal smoothing parameters in a non-parametric regression involving categorical regressors do not vanish asymptotically.
Furthermore, they prove that the variance of the smoothed estimator is a weighted sum of the asymptotic variances from
other categories. This finding provides a plausible rationale for the observed steadiness in the variance of the mcf estimator
across varying group sizes.
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strengths and the weaknesses of many smoothing methods: the variance is reduced at the cost
of an increasing bias. To improve on the inference in finite samples, the simulations indicate

that it needs some debiasing. This is however beyond the scope of this paper.

5.3.3 Individualized average treatment effects
Table 4 contains the results for the IATEs, averaged over all N IATEs. As inference is
usually not the main goal when computing IATEs, for the centred mcfthe more efficient version

1s included as well.

For the point estimates the ordering is clear-cut. grf and mcf are similar and outperform
both dml versions (ols, rf). In almost all cases, the efficient centred mcf (mcf -cent-eff) performs
best. This is also confirmed by the variations in the DGP as shown in Appendices C.1 and C.2.
The only exception to this rule seems to be, again, the case of a quadratic function for the IATE,
in which all methods seem to do (almost) equally bad with large RMSEs and large mean abso-
lute errors. With respect to the other estimators, in a couple of cases OLS outperforms the more

sophisticated CML estimators (but substantially underperforms in many other scenarios).

For inference, the message is not good: All estimators have coverage probabilities that
are substantially below their nominal levels. However, given the level of granularity of the
IATEs, this finding is of course not surprising. At least for the mcf, we conjecture that this
problem comes from the biases of the individual IATEs. It is less likely that it comes from a
too small estimated standard error, because weight-based standard error estimation is performed
in a very similar way as for the ATE and the GATEs, in which it turned out to be almost unbi-

ased.
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Table 4: Simulation results for individualized average treatment effects (IATEs)

Estimation of effects Inference
Estimator  Selectivity = Sample size Bias Mean RMSE CovP (80) in
absolute %
error

(1) (2) (3) (4) (5) (7) (9)
dml-ols None 2’500 -0.002 0.229 0.286 15
dml-rf -0.002 0.270 0.342 -
grf-cent 0.004 0.155 0.187 57
mcf-cent 0.002 0.162 0.199 56
mcf-cent-eff 0.004 0.151 0.184 -
dml-ols Med- 2’500 0.020 0.236 0.295 16
dml-rf ium 0.013 0.284 0.362 -
grf-cent 0.034 0.175 0.210 51
mcf-cent 0.037 0.174 0.212 53
mcf-cent-eff 0.040 0.163 0.197 -
dml-ols Strong 2’500 0.140 0.285 0.357 18
dml-rf 0.117 0.349 0.461 -
grf-cent 0.092 0.254 0.297 33
mcf-cent 0.046 0.212 0.252 45
mcf-cent-eff 0.048 0.205 0.240 -
dml-ols None 10’000 -0.001 0.179 0.219 4
dml-rf 0.000 0.201 0.256 -
grf-cent 0.002 0.082 0.103 76
mcf-cent 0.004 0.096 0.121 63
mcf-cent-eff 0.003 0.088 0.110 -
dml-ols Med- 10’000 0.010 0.181 0.222 5
dmli-rf ium 0.005 0.214 0.274 -
grf-cent 0.016 0.089 0.111 73
mcf-cent 0.013 0.106 0.131 59
mcf-cent-eff 0.013 0.100 0.111
dml-ols Strong 10’000 0.079 0.205 0.256 8
dml-rf 0.058 0.275 0.418 -
grf-cent 0.053 0.123 0.162 66
mcf-cent -0.014 0.156 0.185 43
mcf-cent-eff -0.014 0.151 0.151 -

Note:

dml is the normalized dml (denoted as dmi-norm. in Tables 1 and 2). RMSE abbreviates the Root Mean Squared

Error. CovP (80) denotes the (average) probability that the true value is part of the estimated 80% confidence inter-
val. 1000 / 250 replications are used for 2'500 / 10°000 observations.

5.3.4 Summary

dml shines when the target is low dimensional, such as the ATE and GATEs with few

groups, and selectivity is not too strong. If selectivity is strong or the number of groups becomes

too large, then its performance quickly deteriorates.

grf shows a similar good behaviour for the low dimensional parameters, as well as a sim-

ilarly bad behaviour for GATEs with many groups. However, it performs well for IATEs. It is
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also less affected by strong selectivity than dml. These results however only hold for the mod-
ified version of the grf'in which the outcome variable in the training data is explicitly centred
before it enters the grf algorithm. The original uncentered version of grf as suggested in Athey
et al. (2019) and implemented in their package underperforms in many scenarios due its bias

problem (as does the uncentered version of the mcf).

Compared to dml and grf, the mcf generally shows a robust and competitive behaviour in
many scenarios. The price to pay for this robustness and competitiveness is the somewhat
higher standard deviation for the very low dimensional parameters like ATE and GATEs. De-
pending on the sample and the resulting precision of the estimators, this price may well be
worthwhile paying. A further important advantage of the mcf is that its estimates are internally
consistent over aggregation levels as ATE and GATEs are computed as averages of IATEs.
This advantage becomes particularly apparent when the number of groups for the GATEs in-
creases. While dml and grf have substantially higher RMSEs than for the more fain-grained
IATEsS, the uncertainty (and bias) in the mcf estimators smoothly increases with the number of

groups, until it reaches the level of the most fine-grained heterogeneity parameter, the IATE.

6 Conclusion

Estimation of causal effects at different levels of granularity is of great importance for
informed decision-making and tailored interventions. Lower levels of granularity capture the
effect of a policy or intervention on a large population, guiding decisions on policies that cannot
be targeted at individuals but must be deployed universally. Higher levels of granularity capture
effects at a group or individual level that can serve for decisions how policies can be tailored
more individually or for better understanding of the effects of large-scale policies at more gran-
ular levels. The complexity of such interventions requires methods that can estimate fine-
grained heterogeneities of causal effects flexibly, such as some Causal Machine Learning

(CML) methods.
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In this paper, we investigate such CML methods subject to the restrictions that (i) they
provide estimators of the causal effects at all aggregations levels, (ii) are essentially non-para-
metric, and (iii) that they allow for classical repeated sampling inference. Ideally, they are also
internally consistent that aggregation of lower-level effects lead to the higher-level effects.
Double/debiased Machine Learning (dml), the Generalized Random Forest (grf), and the Mod-
ified Causal Forest (mcf) fulfil these criteria and thus belong to the group of estimation methods

which we call ‘Comprehensive Causal Machine Learners’ (CCML).

Here, we describe these estimators and their proven theoretical guarantees. For dml/ and
the grf, they are already known, but not so for the mcf. Therefore, we explicitly provide them.
The large-scale simulation study reveals scenarios in which the methods perform well. dm! with
normalized weights performs well in terms of RMSE and coverage probability when the target
is low-dimensional, i.e., ATE and GATEs with few groups, and when the selection into treat-
ment is not strong. grf shows similar behaviour as dm/, however its performance for IATEs in
terms of RMSE is much better. mcf has similar performance as grf'in case of IATEs and out-

performs dml and grf'in scenarios with many GATEs or strong selection.

The results of the simulation study offer several practical recommendations. For low-
dimensional targets when selection to treatment is moderate, dm! is preferred including statis-
tical inference. For IATEs, Causal Forest based methods perform well in terms of point estima-
tion. When inference is not a priority, the more efficient version of mcf is recommended to
estimate IATEs. For large groups, mcf'is recommended for point estimation of GATEs. When
sample is large enough and slight loss of efficiency is not detrimental, mcf can be used to esti-
mate all effects due to its robustness to strong selection into treatment and large GATE groups.
When internal consistency of the effects is important, only mcf can guarantee it due to its ag-

gregation strategy.
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The practical use of these three CCML methods is supported by the availability of well-
maintained software packages: dm/ is available as Python and R packages, the grf'is available
as an R package, and the mcfis available as Python package.** On a practical note, the results
in this paper indicate that users of the grf package are encouraged to perform local centring of
the outcome variable via K-fold cross-fitting to remove any potential bias (the same holds for

mcf, where this step is already implemented in the package).

The simulation study also points to topics for further research. For example, the sensitiv-
ity of the dml estimates to strong selectivity opens a topic of how to make them more robust to
extreme propensity scores without impairing its efficiency and statistical inference. Due to the
smoothing character of Causal Forests, in finite samples mcf estimation of GATEs and IATEs
balances the bias-variance trade-off yielding low RMSEs but impairing the coverage probabil-
ity due to a small bias and low variance. Finding a way how to further de-bias the estimates

would improve coverage probability in finite samples.

34 For example, Bach, Chernozhukov, Kurz, and Spindler (2022, 2024), and Knaus (2022) for dml; Athey and Wager (2019)
for grf; and Bodory, Busshoff, and Lechner (2022) for mcf.
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Appendix A: More details on the mcf

Here, we present detailed proofs and some more details of the Causal Forest algorithms

used in the EMCS.

Appendix A.1: Theoretical proofs

The following notation as in Wager and Athey (2018, WA18) is used for the asymptotic

scaling:  f(s)>g(s) means that liminf f(s)/g(s)=1, and f(s)<g(s) means that
liminf f(s)/ g(s)<1. Further, f(s)=Q(g(s)) means that liminf|f(s)|/g(s)>0, ie., that

| f (S)| is bounded below by g(s) asymptotically.

Appendix A.1.1: Proofs for Theorem 1
In this section, we collect all necessary results for the bias bound. In the first step, we
show that the volume of the tree shrinks with larger subsample size S, . We focus on the volume

instead of the diameter in comparison to WA18 as the volume is important to determine the
expected value of honest samples in the leaf as the subsampling rates in the training and honest
set may differ.

LEMMA 1 (based on Lemma 1 in Wager and Athey, 2018) Let S(x) be a final leaf containing
the point . in a regular, random-split tree according to the definitions above and let
A(S(x)) be its Lebesgue measure. Suppose that X,,..., X ~U ([O, 177 ) independently.
Then for a £0.5, the expected value of the Lebesgue measure of the final leaf has the
following bounds

E[A(S(x))] = O, s o),
E[ASx)]=Q(s").
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Proof: Let c(x) denote number of splits leading to the leaf S(x) and S, , be the number of

observations treated with treatment ¢ in the training subsample. By Wager and Walther (2015),

in particular using their Lemma 12, Lemma 13 and Corollary 14, with high probability and

simultaneously for all but last O(log(log S, ) parent nodes above S(x), the number of training
examples in the node divided by §, is within a factor 1+ o(1) of the Lebesgue measure of the

node. Therefore, for large enough §, with probability greater than 1 -1 / 8, it holds that

AS(x) < (1-a+o(1)"™

To further evaluate the upper bound for A(S(x)), the smallest number of splits that
could lead to a leaf S(x) needs to be determined. Let s, = n"bin s, denote the smallest treat-
ment in the training subsample. By regularity, the following holds Sminac(x) <2v-1. Since
S > 8&, then c(x) > 10g((2v—1)/ (slg))/ log(a) for large § and A(S(x)) is bounded by

i(S(x)) — O((l _ a)log((Zv—l)/(s]s))/log(a) ) =0 (Sl—log(l—a)/log(a) )

This also translates into the upper bound for £ [/1(S (x))] )

Let |S (x)| and |S (x,d )| denote the number of observations in leaf S(x) and the number
of observations treated with d in leaf S(x), respectively. Regarding the lower bound, by

regularity |S (x,d )| 2y for all treatments. It can be shown that the probability of |S (x)| >vM
when A(S(x))<vM/ S, decays at least at a rate of 1/ §, for uniformly distributed covariates.
Therefore, VM /5, < A(S(x)) with probability 1=O(1/s,) yielding E[A(S(x))]=Q(s;"). To

guarantee that the upper bound is above the lower bound, o <1/2. H
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THEOREM 1 Under the conditions of Lemma 1, suppose moreover that trees 7 are honest

and E [Y ¢ | X = x] are Lipschitz continuous. Then, the bias of the mcf TATE estimator

at a given value of X is bounded by

‘E[en'yézf (x)} - ‘9;2,1 (x)‘ = 0(s1’1°g(1*“>/1710g<a) ) .

Proof: As forest is an average of trees, the rate of the bias of a tree is also the rate of the bias

of the forest. Let 1, (d;x) denote a tree estimate of a potential outcome of treatment & at point

X of a form

T,(d;x) = Z ij,b (dbj’ Xpj> X d)ybj’

J=1

where we use the following notation for the weights:

S,(d, 0" if x,e€S,(x) and d,=d

Wy (dyy5 %,5%,d) =
0 else

The tree estimator of the treatment effect is 7'(m,/; x) = T(m;x) — T'(; x) . As the treat-
ment effect estimator is a difference of two potential outcome estimators, the absolute bias can

be bounded by the rate of a bias of the potential outcome estimator as

|E[T(m,1;)]— IATE(m.L;x)| < Y

de{m,l}

E[7(d;0)] - E[ Y| X =x],

Therefore, in the following the bias of the tree estimator for the potential outcome will be ana-

lysed.
The next observation is that if £ [Y ¢ |X = x] is Lipschitz, then FE [Y |X =x,D=d ] is

also Lipschitz as the two expectations coincide under the CIA, CS and observation rule. By

using Jensen’s inequality and Lipschitz continuity, the absolute bias can be bounded by
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d 1 d
|E[7,(d:0]-E[ ¥ |X:x]|:E_m 3 Yl}—E[Y X =x]

ieS(d,x)

Y, S(d,x)} —E[Y|X =x]

B
=|E| E
L |:|S(d9x) ia;d,x)

1

= E_ISUTx),es(d . E[Y|S@, x)] —E[Y|X =x]
SE_W;X)EW x)|E[Y|S(d 0 ]-E[r]x = x:H

—E |S(; i x)|E|:Y|S(d x) |- E[Y|X, =x,D,=d]
gEW;x)(z)c o, x| |

As the . regularity would yield a very loose bound on the expected distance, we take
a different approach here based on the nearest neighbours (NN) of the point . that also contain
all the observations in the final leaf. Each final leaf can be bounded by a ball with the centre at

x and radius equal to the longest segment of the leaf which we denote as diam(S(x)). Then

tribution for S, observations and the success probability being the Lebesgue measure of the

ball that can be seen as a function of the diam(S(x)) since the features are independent and

uniformly distributed. At the same time the number of observations in the final leaf |S (x,d )|

follows also a binomial distribution for §, observations and the success probability being the
Lebesgue measure of the final leaf that can be seen as a function of the diam(S(x)) and the
angles to the vertices from the origin point using a high-dimensional polar system. As both

random variables depend on the diam(S(x)), we can conclude that | B(S(x),d)|< O(|S(x,d ))

with a constant larger than 1. As the ball contains the final leaf, the following inequality holds

P e B R

ieS(d,x) ieB(S(x),d)
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When we randomly split all data points in the honest subsample with treatment & into

|B(S(x),d)|+1 segments, the first |B(S(x),d)| segments will have a length s, , /|B(S(x),d)|.

VX . . «th
Denote X' ; as the first nearest neighbour in the ]t segment. Then,

\(())\

S x-dds Y |-

ieB(S(x),d) J=

Therefore, the absolute bias can be further bounded by

d r 1 \B(S(X)d)\
Bl @ 0)-E[v X =x] <. fs@d] £ % b "}
1 \B(S(x)d)\
=CE|E |Sd.x)| “ ”Xx_x” @ X)ﬂ
- [1B(S(x),d
—C,E|E l |g(;x)x)| )| | |S(d:x)|ﬂ

< Cd,BE[E[“f(f‘ ~ s,

= Cd,BE[HX(LLSM/B(S(x)»d>J) - xH

L 1

where X, (L¥) denotes the first nearest neighbour among N observations and Cd,b collects the

Lipschitz constant and the constant from the ratio of the observations in the ball and the final
leaf. For a fixed |S (d ,x)| in a regular, random split tree, we can use results in Gyorfi, Kohler,

Krzyzak and Walk (2002) for nearest neighbour (NN) estimators that also use the expected

distance of the first neighbours in their Theorem 6.2 and Lemma 6.4 yielding the bound
1
} (|S(d, X)) JP
$y.4 '

where C,; collects the constant Cd) 5 and all constants that emerge in the NN proof. The upper

Cask [H (1s2a/BCSCOD])

bound for the last expectation can be then found by applying Jensen’s inequality,
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S2.4d

o (292 { s x>nz<s<x»1}p
E

/1(5 (X)) <¢, (E[ASG)])r

<c,

where C, collects constants stemming from the common support assumption. Using the results

from Lemma 1, the result at the tree level is
|E[7,(d, 0] - E[ Y] X =x ]| = Os,7 e,

The final constant is a function of the Lipschitz constant, constant from the ratio of the obser-
vations in the ball and the final leaf, common support parameter . and k, the regularity param-
eter controlling the number of the observations in the final leaf. As the forest is average of trees,

the result above holds also for the forest estimate. H

Appendix A.1.2: Proofs for Theorem 2

The asymptotic Gaussianity proofs build on a central limit theorem for weakly dependent

random variables of a form 4, N, = WY, — E[WYJ , introduced in Neumann (2013). In this sec-
tion, we prove that 4, v, satisfy the conditions of the CLT yielding the first necessary result. As

not all Y, are unbiased estimators of 1, (x), the weighted average is not an unbiased estimator.

Therefore, in the second step it is necessary to show that the ratio of bias and variance converges

to zero as the sample gets larger and the final leaf shrinks asymptotically.

For the analysis of the variance of the IATE forest estimator, we make the following
observation.
COROLLARY 1 For any forest estimator /' that averages B tree estimators 7, the rate of

the forest variance Var(F) is bounded from above and below by the rate of the individ-

ual tree variance Var(T).
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Proof: The variance of a forest in a simplified notation is

Var(F) = L{ZB: Var(T,) +i Z Cov(T,, Tb)} .

2
B b=l b'#b

As a forest is an average of trees, the worst upper bound of the variance of the forest is the

variance of an individual tree. Lemma 3 shows the upper bound for the tree estimate that con-
verges to zero for f, > f,.

Since any covariance has to go to zero as fast as the variance, the lower bound of the rate of the
variance is also determined by the variance of an individual tree. The lower bound is scaled by

1/B. 1

In the following, we therefore focus on deriving the properties of the tree weights.

LEMMA 2 Let Vf/i’b = Vf/bi’b (D, X;d,x) . Suppose that the assumptions from Lemma 1 hold and

the tree is symmetric. Moreover ﬂ2 > ﬁl /2. Then, the moments of the tree weights have

the following rates and bounds:

1
- Nﬂz

2

0 £[i,]

log(1-a)

b) E[Vlzzb] = QLN log(er) ﬂ12ﬂz] and E|:Vf/12b:| — O(Nﬂ]—2ﬁ2 )’

c) Var(Vf/i’b) has the same bounds as £ [I/f/fb] ,

d) ‘Cov(Vﬁ’b,VI%’b)

—o(N#m).

J>

log(l-a) ,
_o| N @ =35, ~ R
= and ‘COV(VVi,haW'b)

Proof:
a) Due to symmetry, the expected value of the first moment of the tree weights can be

expressed as:
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£, = £ E[ s,
_ [ sls@)  ls@o] 1
B s, s, |S(d,x)|
IR

s, Nﬁz )

b) Let p,(S(x))=s,p,(S(x))/ S, 4 where P, (8(x)) is the propensity score of getting treat-
ment ¢ when on leaf S(x). Due to the common support assumption ﬁd (S (X)) must

lie in an interval (8 /(1-¢g),(1-¢)/ 6‘) . Thus, under symmetry, the expected value of the

second moment of the tree weights can be expressed as:

£ )= B[ [ s, 0]

:E{sz—|S(d,x)|'0+|S(d,x)| 1 2]
s, s, [S(d,x)|

:LE{ ! }z 1 E{l—(I—MS(x»ﬁd(S(x)))‘w}
s, [IS@.0|] s, 58PS |

where the last equality uses the fact that |S (d, x)| is a positive binomial random varia-

ble. Since E[1/[S(d,x)[]>0, E[1/s,,A(S(x))p,(S(x))] determines the lower bound.

The lower bound can then be derived as follows using Jensen’s inequality and results in

Lemma 1:

1 2p +log(lfa)/j,
E[WszQ —Q| N T e |
8,8, E[A(S(x))]

The upper bound can be similarly derived for ﬂ2 > ,31 /2 as
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{ 1 }: E'1—(1—A(S(x>)ﬁd(S(x>))w}
[SCed) 5, AS(D) B, (S(x)

== A B, (SN

- 5 AS())5,(S() AS@) <vM /sl}Pr(i(S(x)) <vM/s,)
1 (1= AS () pu (SN ™

+E S A0 P,(5() A(S(x))>VvM /s, } Pr(A(S(x))>vM /s,)

<1-0(1/s,)+OC(s, /Sz,d)-le(l/NﬁZ‘ﬁ' )

The two results yield

log(l a)
~ 2p+———2p
E[Wﬂ :Q[N log(a) J ,

Both rates have constants that depend on ¢, the common support parameter and regu-
larity parameter v. The upper bound also depends on the number of treatments as the

number of treatments influences the smallest expected Lebesgue measure of the leaf.

c) Since E[Wfb]—)O for ﬂ2 >,81/ 2, the bounds for Var(Wi’b) are the same as for

d) The covariance can be expressed as

COV( ib> b) COV[ 1b’ z j:_Va”(W:b) ZCOV( ibo ,b)

k# k#i,j
yielding

B Var(W b)

Cov(W,,,W,,)=
s, —1

The bounds for the covariance are
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‘Cov(l/f/l.’b,l/f/j,b)

*3ﬂ2+10g(1_a).31
— Q N log(a) ,

‘Cov(VIAfivb,Wi’h) = O(N"w“ﬂ1 )

Note that

.. Var(W,
5" Contl, 7,,) =) m

k#j 2

LEMMA 3 Suppose that the tree conditions from Lemma 2 hold i.e., we build regular, random-

split, symmetric trees. Additionally, the tree is honest and E[Y ¢ | X = x] is Lipschitz
continuous. Moreover, assume that £ [(Y ¢ )Z‘X = x} is also Lipschitz continuous and

Var(Y d |X = x) > 0. Further, the sampling rates satisfy /)72 > /31 . Then the tree variance

has the following rates

5, log(l1-a) ,
~ Tlog@) AP
Var| » WY |=Q| N .
i=1

Proof: The variance of a tree estimator of 4, (X) can be decomposed as

52

Var[i VlAflbY,j = i Var(VIA/l.,bY,)jL zz Cov(l/f/l.vbYl., WJbYJ )
i=1

i=1 i=1 j#i

The upper bound for VaV(W,-,bK) is
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Var(W,, %)= E| WY |- E* | WY, |
<E[W3Y |=E| E[ W

using the identifying assumptions and Lipschitz continuity of E[(Yid )Z‘X ,} on a bounded co-

variate space. This yields that

ZVar(Vf/,b )<s.E[ W) ]C=0(N).

Note that this upper bound converges to zero for /32 > ﬂl . In order to derive the upper bound for

the covariance part, we rewrite the covariance as

Cov(W,, Y, ,,Y))
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Next, we derive the upper bound of " Cov(l/f/;,bK, w,,

k#j

<
S~—"

where the inequality uses the same supremum argument as the proof for the variance, the fact

that the expected potential outcomes are Lipschitz continuous on a bounded covariate space,
ie., E[Yf’ |Xl.] e[-C,.C ] and E[Yi"] e[-C,,C,] for some positive constant C|, and the fact
that the final sum of covariances is positive and therefore the product certainly bounds the orig-
inal sum from above. This yields an upper bound for

Var(VVi,b) C?

1

ZZ‘COV(VIZJ)K, Vf/]bY]) <s,(s,—1)

i=1 j#i §, =

— O (Nﬂl ) )
The overall upper bound for the tree variance is

Var(il/ffi’sz = O(Nﬂ'_ﬂ2 ) .

i=1

The constant depends on ¢, the common support parameter, regularity parameter V , number of

treatments M and a constant related to Lipschitz continuity of the outcome variable.
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Due to non-negativity of the variance, it is enough to find the lower bound for E[Wij] to

analyze the lower bound of Var (W,,Y) .

()= {3

log(1- a)ﬁ] 25
=Q| N o .

i=1

N - Mﬂl—ﬁz
Therefore, ZVar(VK sz) Q| N leg@ .

The lower bound for the covariance bound can be derived with help of the triangular inequal-

ity,

[
‘ [E[1/|S(x d)| YY,[AS(0). X, X, e 5() [Pr(X, XJ‘GS(X)M(S()C)))j”

1
> E[me Y,
(Sz,d) d,x [ J

=Q(N)

ir LA )

= x}(z(S(x)))z}
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sl -]
[

E|[W,, Y| X, € S(x), A(S(x)) |Pr(X, e S(x)lxl(S(x)))]

1 .
> ;E[g [%]0,=d. %, =x] a5 |
=Q(N”)
Since ‘E[WbYijYj] —o(N2a), ‘E[WbY]HE[W,bY, ]‘ _o(Ns#)  and

‘E[Vf/hY]‘ ‘E[Vf//byj] = O(N#), the final lower bound is

|Cov,, Y, ,,7,)| = (N7 ).

Putting these results together yields a lower bound for covariance:

)

i=1 j#i

COV(Wi,ina ijY/ )

=Q(N?1).

As the lower bound for the covariance exceeds the lower bound for the variance, the lower

bound for the tree variance is determined by the one converging slower to zero i.e.

2, loelloa) o g,
Var[ZW;bYZJZQ N log(ax) .

i=1

The constant depends on ¢, the common support parameter, regularity parameter £ and a con-

stant related to Lipschitz continuity of the outcome variable. ll
LEMMA 4 Let the assumptions from Lemma 3 hold and 4, N, = I/f/l VY- E[Vf/ NK] , Where
Vf/[, v are the forest weights. Then (Al-, N, )i=1,-~, v, 18 a triangular array satisfying:
a) E[Aw2 ] =0 ,

Ny
b) D E[4}, ]<o forall Nand i,
i=1

2.
c) oOy= Var(ALN2 +..+ ANz,Nz)—>N_m 0,
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d) %E[AfNZLQALNz > gﬂﬁw—m forall >0,
i=1

e) There is a summable sequence (ﬂ,,)reN such that for all ueN and all indices
1<s <5, <..<5,<5,+r=1<t,<N,, the following upper bounds for covariances

hold true for all measurable functions g:R" = Rwith ” g”oO =sup ., | g(x)| <I:

|COV(G(A, . voms Ay A, o Ay )| < (BLAZ 14+ ELAZ 1+ N 7,

and

|COV(g(AS1 e A v A A, )| < (E[A,iNz 1+ E[4] , 1+ N;' );,r ,
Proof:
a) E|:Vf/i,Nyi _E[Wiw)’}}] =0-

b) EI:AI'Z,NZ :I = Var(pf/i,N)fi) = (E[Vf/lzNleiI— E* [WAIN)/I])

Deriving upper bounds for E[Vf/i,NYi ]and E[VIA/I,,ZNKZ], we use that VIA/;’N and Y, are inde-

1

pendent conditional on X, and E[Yd | X = x} and E [(Yd )2‘ X = x:| are Lipschitz con-

tinuous and therefore can be bounded from above by C; <®and C, <0 respectively on

a bounded covariate space. The first and second moment of the forest weights are

B
lZVVi,N,b :S_2l L:L,, N
B N,B s, N,

and
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) 2
=;]_22312 _bZB;E[Vf/i’zN’b]—FbZB;b;th[Vf/INbWW'Nb ﬂ
W
2 L
R
2 L
<5 i, J|-o(v %)
, B*L

These results can be used to further bound the following expectations:
E[W,Y,]= E[E[W,.W x| E[Y, |Xi]] =o(N),
E[WZZNYIZ] = E|:E|:Vf/;21v |Xz:|E[Y12 |X::|:| = O(N717ﬂ2+ﬂ‘ )

It follows that

Using the results from b), the first element is bounded at rate O(N ’ﬂz*ﬁ‘) and by a
similar logic as in the tree case the sum of all covariances has to decay to zero as fast as
the sum of variances. These results yield thatVar(4,  +..+ 4y \ )—5—0.

d) Due to monotonicity and the result in b):
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ZE[AI.Z’NZ 1|4, > gﬂ <Y E[ 4]0 forall £>0.

e) Due to exchangeability which implies strict stationarity and the result in c), it is possible

to interpret (Ai, N, )i=1 . s a 0O -mixing process. Since every ¢-mixing process is also

555555

L -mixing, then along the Lemma 20.1 in Billingsley (1968) for -mixing processes,

we can also bound the covariances of a p -mixing process as follows:>>

‘COV(g(ASl,NZ oA ) A A )

S2\/a\/E[g2(ASI’NZ,...,ASWNZ)A;‘NJ E[ 42, ]

and

C Ov(g(As] LN, 2 ° As ,N, )’ t,,N, t2 ‘ - 2¢l -, E[

At N, At N, H = 2¢t, ﬂUEI:At,Z,NZ:'

where the last inequality follows from the stationarity of the process. The two results

can be further bounded

|Cov(g(z‘lsl,]\,2,---,1‘13u,;\/2)ASU,NZ>Azl,N2 | = 2\/@7\/13[ \/E - N2
<Jo-. (E[ 4., ] +E[ 4, )
<o (B[40 ] E[ 4]+ M)

by property of the function g() and inequality of arithmetic and geometric mean
and

[Cov(g(4, x,»-mm

< (L T o)

YN)’ A t2N2

by stationarity and the fact that the mixing coefficients are smaller or equal to 1.

Then the weak dependence conditions are fulfilled for 7, = \/a .|

35 Bradley (1986) showed that the coefficients of the two processes fulfil the following inequality: P, = 24 /¢r .
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N,
LEMMA 5 Define Ai’N2 as in Lemma 4, then IATE(m,[;x)— E[IATE(m,l;x)} = Z AU\,2 and
i=1

@(m,l;x)—E[@(m,l;x)}

—> N(0,1) .

JVar(IATE(m, ;x))

Proof: The normality proof for triangular arrays satistying the conditions in Lemma 4 is proven
in Neumann (2013) and can be applied on estimation of potential outcomes H, () and H; (x).

As those are estimated on an honest data set, the difference of the two quantities will also follow

a normal distribution. Il
THEOREM 2 Assume that there are i.i.d. data (X,,Y,D,)€[0,1]" xRx{0,1,...M —1} and a

given value of . Moreover, features are independently and uniformly distributed

X, ~U ([0, l]p ) .Let 7" be an honest, regular and symmetric random split tree. Further

assume that E[Y" | X =x] and E[(Y")Z‘ X =x} are Lipschitz continuous and

p+2log(l-a)

Var(Y"|X=x)>O.Thenfor B < B, < B
p log(a)

IATE(m,l;x) - IATE(m, ; x)
JVar(IATE(m, I x))

— N(0,1).

Proof: Given the result in Lemma 5, it remains to show that

E[[Zﬁ?(m,l;x)}—lATE(m,l;x)
-0,

JVar(IATE(m, I; )

The final result will follow then from Slutsky’s lemma. By Theorem 1, we have

[E[TATE(n,15) |~ ATE(m, ) = O s, 75)).
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From Corollary 1, we get

o log(1-a) 5,
Var(IATE(m,[;x)) = Q| N &« :

It follows that

p 2 2

(E[@(m,l;x)} —IATE(m,l;x)) ) O(N['“]l?il(a‘?) ﬂﬁﬂz].

JVar(IATE(m,1; x))

The ratio converges to zero when

p log(1-a)
2 < 1-
2+p log(@x)

Appendix A.1.3: Proofs for Theorem 3

THEOREM 3 Let all assumptions from Theorem 2 hold and define ATE (m,l) as an average

of all corresponding JATE (m,[;x). Then,

ATE(m,l)— ATE(m,I)
JVar(ATE(m, 1))

—> N(0,1).

Proof: Using the CLT for triangular arrays of weakly dependent random variables requires to

check that all requirements in Lemma 4 hold for 4, ="y, - E[VIA/I_ATE (m! ’Yl} . The proof

uses the observation that the rates for the ATE cannot be worse than for the I[ATE and, there-
fore, the conditions in Lemma 4 will be satisfied for the ATE weights. Due to the pointwise

convergence at different points X, the convergence rate is affected.

a) E[4,, |=0 holds trivially.
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N, N, )
b) ZE [ AZ.Z’N2 ] = Z Var(WiATE("””K. ) . The upper bound on the individual variances is the
i=1

i=1

1

upper bound of E[(Wi”‘g("’"’ )2 Y.z} :

2
1 1 A,2 - 1 1 1

j=

g oy 07 | e ]

= 2
(M)
— O(N*I*ﬂﬁﬁl )

N, .
The second requirement is also satisfied as | Var(Wl.ATE(’””)Yi) = O(N b ) <o .

i=1
Ny N Ny A N, R
) Var(d,y, .t Ay ) =Var| SN =S B[R0 | =Var| P70
=l i=1 i=1

N . N
< ;Var(mjfﬂm’”z)+zz

i=1 j=i

Tr ATE (m,l) Tr ATE(m,l)
Cov(W, 47 "%,, WY,

Using the results from b), the first element is bounded at rate O(N ’ﬂz*ﬁ‘) and by a

similar logic as in the tree case the sum of all covariances must decay to zero as fast as

the sum of the variances. These results yield that Var(4, y +...+ 4,  )—5—0.

d) Due to monotonicity and result in b):

iE[AfNZ 14> g)] < iE[AfNZ |0 forall £>0.
i=1

i=1

e) The proof follows the same logic as in Lemma 4.

With this, all requirements for the CLT for triangular arrays of weakly dependent random var-
iables hold, so that we get
ATE(m, 1)~ ATE(m,1)

JVar(ATE(m, 1)
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N2 A oqe .
Note that £ ZWI,AP oDy |=E [Yd] due to exchangeability and the fact that the weights sum
i=1

to 1. Therefore, we could have applied the CLT directly to the quantity of interest. The next

corollary would follow a similar proof. B

Appendix A.2: A comparison of mcfand grf

The Figure A.1 captures graphically the main differences between mcf and grf procedure

regarding the one-sample and two-sample honesty and estimation of the weights.

Figure A.1: Diagram of grf and mcf
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Appendix B: Additional details of the Monte Carlo study

Section B.1 explains the general simulation protocol used, while Section B.2 explains the
data generating processes in detail. Section B.3 gives the details of the implementation of the

various versions of the different estimators used.

B.1 Simulation protocol

Table B.1 shows the protocol employed in the Monte Carlo study.

Table B.1: Protocol of the Monte Carlo Study

1 Specify the data generating process with respect to (i) sample size, (ii) strength of selec-
tivity into treatments, (iii) type of covariates, (iv) influence of covariates on
non-treatment potential outcomes (including the degree of sparsity), (v) size of
treatment effect and its heterogeneity, (vi) treatment share, and (vii) number
of treatments

Draw training data of size N

Draw prediction data of (same) size N

Compute the true values of ATE and GATE and IATE on the prediction data

Train the different estimators on the training data

Predict ATE, GATEs, and IATEs on the prediction data

Repeat steps 2 to 6 R times (R =1’000 * (2’500 / sample size) )

Compute the performance measures

9 Repeat step 1 to 8 for different specifications

Note:  The number of replications (R) declines such that the simulation noise remains approximately constant if the esti-
mator is \(N)-convergent.

cONO U B WN

B.2 Data generating processes
The description of the data generating process covers the covariates, the selection (treat-

ment) process, the outcome process, and the effects and their heterogeneity.

B.2.1 Covariates

The covariates are independent from each other and either normally or uniformly distrib-

uted,?** both with mean zero and variance one.

36 The reason for the uniform distribution is that the results for the grfand the mcf assume uniformly distributed covariates.
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xY ~uniform(—12/2,\12/2), dim(x") = p¥
x" ~N(,D), dim(x") = p"
p=p"+p", Vi=1,..,N.

We also consider a scenario where the first 5 variables of X" and XV are generated as
dummy variables, with X =2 l(X > 0) -1, also with mean zero.
In the simulations, we consider values of the following triples (p~, pY, p?): (10, 10, 0), (5,

5,0), (25, 25, 0), (20, 0, 0), (0, 20, 0), and (5, 5, 10). Thus, we capture cases of 10 to 50 covari-

ates that may be of different types. (10, 10, 0) is the base specification.

B.2.2 Selection (treatment) process

We consider cases of two and four treatments where all treatments have equal shares. As
an extension, in the binary treatment case there are also treatment shares of 25%. The treatment

indicators are obtained from the quantiles of the following index function:

Vziwp B=01-1/k,.,1/k,0,..,0), dim(B)=p, 4e[0,0.42,1.25],

! P
D> B/125
Jj=1

The impact of the covariates declines with their order. The parameter A determines the

u, ~N@©,1), Vi=1,..,N.

strength of the selection process, from a randomized experiment (A=0) to the case of strong
selection (A=1.25 for uniform and mixed covariates; in case of normally distributed covariates
grid for A is 0, 0.45, and 1.5). In the intermediate setting, a machine learning estimation (using
1°000°000 observations) of the selection equation will obtain an out-of-sample R’ of about 10%,
while in the extreme case this value rises to about 42%. As it turns that the strength of selectivity
is an important parameter when considering the performance of estimators, the base scenario
considers all three selectivity levels. The baseline scenario in Appendix C.2 is based on the

medium selectivity.
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B.2.3 IATEs
The TATEs are deterministic functions of the covariates. All specifications of the IATEs

are based on the following linear index, which is like the one used for the selection process:

A = o x;y

i p 5
D> B/1.25
J=

The value of o™’ captures the strength of heterogeneity. Its exact value depends on the

y=01-1/k,.,1/k,0,..,0), dim(y)=p, a<[0,a"]

Vi=1,..,N.

type of non-linearity and the R’ of the potential non-treatment outcome process to ensure that

the implications of the different effect strengths on the outcome remain stable.

The following variations of heterogeneity are considered for the IATE:

IATE. = A, +1: linear

IATE, = F 5" (A.)+0.5: nonlinear
Al-12

IATE, = ALE +1: quadratic

3
IATE, = ™ (fcl’i)fWA (x,,)—1.8: step function (Wager — Athey)
1

F"¥% . c.d.f. of logistic distribution, f"*(x) =1 +W’ Vi=l..,N.

They represent a linear function and three non-linear functions. Note that the last function
is very similar to the DGP used in Wager and Athey (2018). For the latter, the heterogeneity

depends only on two variables (which are the ones that are most important for the selection and
the outcome processes). il,t and )NCZ’,. are transformed versions of x;; and x2,, where the exact

transformation used depends on the distribution of each variable. The baseline scenario in Ap-

pendix C.2 is based on the step function only.

The resulting ATE in these cases is always one, independent of the heterogeneity speci-

fication. In addition to these cases, we also consider a case of the IATEs all being equal to zero.
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B.2.4 Outcome processes

The outcome process consists first of specifying a process for the non-treatment potential
outcome. The potential outcome with treatment is obtained by adding the IATE plus noise to

the non-treatment outcome.

The following non-linear outcome process is specified for the potential non-treatment

outcome:

5B B (L1=1/k,1/K,0,..,0), dim(B)= p,

P

D> Br/1.25

Jj=1
y =dsin(y,)+e’, 6€[0,6™,57¢], &’ ~N(0,1),
vyl =y' +IATE, + &/, g ~N(@O,1), Vi=l,..,N.

5™ and 5°"¢ are chosen such that the R? in the outcome process of the potential non-

treatment outcome is about 10% (base specification) and 45%.

Figure B.1 shows the relation of the potential outcomes and their expectations with the
index X, for the case of p*=pU=10, p=20, K*=kU=5, k=10, and 5" with respect to the differ-

ent heterogeneities. Figure B.2 shows the same relationship for the stronger effect size 5.
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Figure B.1: Shape of potential outcomes for different shapes of IATEs (5" )
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Note: Figures are based on 1°000’000 observations.

Figures B.1 show that the differences between the linear and the non-linear case are rather
small, at least compared to the quadratic IATEs and those based on the step function. In partic-
ular the latter, for which the IATEs depend only on the first two most important covariates,
show behaviour that is not being well approximated by any parsimonious parametric function

of the linear index. Thus, we conjecture that this type of effect heterogeneity will be most dif-

ficult to estimate well.

Increasing the predictiveness of the covariates for the non-treatment potential outcome
(Figure B.2), denoted by the blue dots and the green line, leads to substantially more pro-

nounced non-linearity with respect to the linear index. This is true for all specifications of the

IATEs, but particularly so for the quadratic one.
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Figure B.2: Shape of potential outcomes for different shapes of IATEs (5°"* )
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B.2.5 Overview of simulations and outcome tables

Table B.2 gives an overview where to find the simulations results for the different data

generating processes in Appendix C.
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Table B.2: Overview of specifications and their locations

Table Hetero- Selec- k p R? (y9) X N Noof Treat-  GATE
geneity tivity treat- ment  groups
ments share
C.1 none none 10 20 10% U, N stand 2 50% 5
C.2 none middle 10 20 10% U, N stand 2 50% 5
C3 none strong 10 20 10% U, N stand 2 50% 5
Cc.4 linear None 10 20 10% U, N stand 2 50% 5
C.5 linear middle 10 20 10% U, N stand 2 50% 5
C.6 linear strong 10 20 10% U, N stand 2 50% 5
C.7 nonlin None 10 20 10% U, N stand 2 50% 5
C.8 nonlin middle 10 20 10% U, N stand 2 50% 5
C.9 nonlin strong 10 20 10% U, N stand 2 50% 5
C.10 quadrat none 10 20 10% U, N stand 2 50% 5
C.11 quadrat middle 10 20 10% U, N stand 2 50% 5
C.12 quadrat  strong 10 20 10% U, N stand 2 50% 5
C.13 step none 10 20 10% U,N stand 2 50% 5
C.14 step middle 10 20 10% U, N stand 2 50% 5
C.15 step strong 10 20 10% U, N stand 2 50% 5
C.16 step middle 5 10 10% U, N stand 2 50% 5
C.17 step middle 25 50 10% U, N stand 2 50% 5
C.18 step middle 4 20 10% U, N stand 2 50% 5
C.19 step middle 16 20 10% U, N stand 2 50% 5
Cc.20 step middle 10 20 0% U, N stand 2 50% 5
c.21 step middle 10 20 45% U, N stand 2 50% 5
C.22 step middle 10 20 10% U stand 2 50% 5
C.23 step middle 10 20 10% N stand 2 50% 5
C.24 step middle 10 20 10% U,N,D stand 2 50% 5
C.25 step middle 10 20 10% U, N stand 4 50% 5
C.26 step middle 10 20 10% U, N 40’000 2 50% 5
C.27 step middle 10 20 10% U, N stand 2 25% 5
C.28 step none 10 20 10% U,N stand 2 50% 5-40
C.29 step middle 10 20 10% U, N stand 2 50% 5-40
C.30 step strong 10 20 10% U, N stand 2 50% 5-40

Note:  Deviations from the benchmark specifications are in bold font. N stand implies that N = 2’500 and N = 10°000 are in
the same table. X U,N, D denotes uniformly and normally distributed covariates, as well as dummy variables.

B.3 Implementation of the estimators

To avoid additional computational costs in an already computationally very expensive
simulation study, none of the estimators has been explicitly tuned. Either default values are
used for the tuning parameters, or tuning parameters have been set to a fixed value beforehand.
In an empirical application, the quality of estimation could be improved by hyperparameter
tuning. For more details on hyperparameter tuning for dml, see Bach, Schacht, Chernozhukov,
Klaassen, and Spindler (2024). Forest estimators often minimize out-of-bag error to find opti-
mal hyperparameters. For details on the tuning procedures, please refer to the documentation

of grfand mcf.
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B.3.1 MCF

The results of the mcf are computed with the Python version of the package which is
available on PyPI. Most of the simulations have been performed with version 0.3.3., but some
of the latest simulations used also the newer and faster version 0.4.3 (if true, this is indicated in
the respective table). Although some default values changed a bit between the versions, results
were very similar. In the following, sample A denotes one half of the data set used to build the
forest (training data) and sample B denotes the other half of the sample used to estimate the

effects (honest data).

Contrary to the default values, the minimum leaf size in each tree equals 5. The number
of trees contained in any forest equals 1000. Trees are formed on random subsamples drawn
without replacement (subsampling) with a sample size of 50% of the size of sample A. Regard-

ing estimation of MCE and finding close neighbours, closeness is based on a Random Forest
based prognostic score (see Hansen, 2008), [ﬁo(x),...., ,&M_l(x)] weighted by the Mahalanobis

distance, as forming the neighbours by simplified Mahalanobis matching suffers in large-di-

mensional problems.

Two variants of this estimator are used, with and without local centring. Local centring
is implemented in the mcf package by running a regression random forest (using the Python
package scikit-learn) to predict £(Y|X) (X does not include the treatment). These (out-of-train-
ing-sample) predictions are obtained in a 5-fold cross-fitting scheme. The predictions are sub-
tracted from the observed Y to obtain a centred outcome, Y°". Y** instead of Y is subsequently
used as outcome in the mcf algorithm. The simulations show that this centred version outper-
forms the uncentred version when there is non-random selection. Recentring is implemented in

the following way:

1) Estimate the trees that define the Random Forest for £(Y | X = x) in sample A.
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2) Recentring of outcomes in sample A: Split sample A randomly into K equally sized parts,
A-1 to A-K. Use the outcomes in the union of the K-/-folds 4-7 to A-(K-1) to obtain the
Random Forest predictions given the forest estimated in step 1). Use these predictions to

predict E(Y | X = x) in fold 4-K. Do this for all-possible combinations of folds (cross-fit-

ting as used in k-fold cross-fitting). Subtract the predictions from the actual values of Y.
3) Redo step 2 in sample B using the estimated forests of sample A.

Concerning the specifics of the local centring algorithm, there are a couple of points worth
mentioning. First, to avoid overfitting, the outcomes of observation ‘i’ are not used to predict

itself. Therefore, the chosen implementation is based on cross-fitting.

Second, weights-based inference requires avoiding a dependence of the weights in sample
B on outcomes of sample A. However, since recentring uses outcome variables independent of
the treatment state, this could induce a correlation between the recentred outcomes in different
treatment states. This finite sample correlation will be ignored here (as in Athey, Tibshirani,

and Wager, 2019).

Third, the number of folds is a tuning parameter that influences the noise added to the
recentred outcome by subtracting an estimated quantity. The simulation results indicate that the
computationally most attractive choice of K=2 may be too small in medium sized samples and
that a somewhat larger number of folds may be needed to avoid much additional noise to the

estimators.

The nonparametric regressions that enter the estimation of the standard errors are based

on k-NN estimation with number of neighbours equal to 2 sqr¢(N).

If inference is not of interest, a more efficient mcf estimator can be obtained by switching
the roles of the samples used for building the forest and populating the leaves with outcome

values, and subsequently averaging the two estimates.
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B.3.2 GRF
The reported results are based on the R package grf (version 2.3.1). The default forest

parameters are 2000 trees (twice more than in mcf), minimum node size is 5 and number of

variables tested for a split is a random draw from a Poisson distribution with parameter min(p,

round_up((p+20)"(1/2))).

The default implementation of the grfuses out-of-bag predictions of nuisance parameters
to remove confounding effects in order to find the best splits on which the IATEs are estimated.
As this implementation is not in line with the theory in Athey et al. (2019), a centred version of
the algorithm, using K-fold cross-fitting to calculate the residualized outcome that is later fed

as an input to the grf, is added to the simulation.

For later estimation of GATEs and ATEs, so-called DR scores need to be constructed.
GATE and ATE can be estimated directly via functions average treatment effect() and
best linear predictor(). Both functions need the estimated forest as an input to estimate the
effects on the data used for building the forest and estimating the forest weights. Here, the
simulation deviates from the protocol, as currently grf does not provide an option to estimate
the DR scores on a new (prediction) data set. The package provides function get scores() which
computes the estimated component of a DR score on the data set that was used for the forest if
needed. The current implementation of GATE estimation avoids the best linear predictor()
and regresses the scores from get score() on group dummies exploiting the homoscedastic error

terms for estimation of standard errors.

B.3.3 DML

The key element of all dml/ estimators is the DR component of the dm!/ score. For treat-

ments m and /, this DR component is defined as:

i 1D =m)(Y -p, (X)) LD=) - (X))
(X, Y, Dyn(X)) = p (X)— (X m _
i ( (X)) =, (X)— @ (X)+ > () . (0)
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,ud(x):E(Y|D:d,X:x), pd(x):P(D=d|X:x)

The nuisance parameters, 7(X)=(u,(X), 14(X),p, (X), p,(X)) are estimated with re-

gression forests. As usual, the necessary cross-fitting is implemented via 5-fold cross-fitting.
To obtain effects, the estimated DR components of the score for the desired treatment contrasts

are formed. The ATE is obtained by averaging these differences.

GATEs and IATEs are obtained by regression-type approaches in which the estimated
DR component of the score serves as dependent variable. The GATEs are computed as OLS-
coefficients of a (saturated) regression model with the indicators for the GATEs groups acting
as independent variables. IATEs are estimated by using X as independent variables either in a
regression random forest®” or in an OLS estimation. When OLS regressions are used, inference
is based on heteroscedasticity-robust covariance matrix of the corresponding coefficients. No

inference is obtained for the random forest based IATEs.

As the weights may lead to small sample issues, in particular when selection probabilities
get close to zero, two versions of the dml estimator are considered. The first one is taking the
weights as they are, while the second version normalises to sum of the weights to one (N)** and
truncates ‘too large’ weights. Too large here means that a single weight is larger than 5% of the
sum of all weights (if so, it is truncated at 5%). Since the normalised versions appears to out-
perform the non-normalized one in many simulations, the latter is presented in the main body

of the text.

37 For methods prone to overfitting, an additional data split might be beneficial that enables training of the model and
estimation of IATE to be done on different parts of the data set as recommended by Knaus (2022). This step was not
implemented for comparability of the estimates across methods.

38 Similarly, as in the normalized DR learner in Knaus (2022).
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B.3.4 OLS

As a benchmark estimator, a two-sample (for binary treatments) OLS estimator is imple-
mented in a standard way. However, since there are substantial non-linearities in the DGP, it is
not surprising that there are many scenarios in which this estimator performs badly. Therefore,

OLS results are not reported in the main part of the paper.
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Appendix C: Detailed results of the Monte Carlo study

C.1 Base specifications

In this section, we vary the selectivity and the type of the IATE jointly and keep the other
parameters fixed at their base values (i.e., k=10, p=20, R’()’) = 10%, X" and XY, binary treat-

ment, treatment share 50%, N=2"500 and N =10’000).

Table C.1: No IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness  Kurto-  (SE) (95) (80)
error sis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf -0.003 0.048 0.060 0.060 0.01 -0.05 0.000 96 79
GATE 5 -0.003 0.052 0.065 0.065 0.01 0.05  0.002 96 81
IATE N -0.003 0.079 - 0.100 - - - 97 85
IATE eff N -0.001 0.056 - 0.070 - - - - -
ATE 1 mcf  0.001 0.048 0.061 0.061 0.03 0.07 -0.002 94 77
GATE 5 cent 0.001 0.051 0.065 0.065 0.03 0.13 -0.001 95 78
IATE N 0.001 0.080 - 0.100 - - - 96 82
IATE eff N 0.001 0.056 - 0.070 - - - - -
ATE 1 grf -0.001 0.034 0.042 0.042 -0.14 -0.01 -0.000 95 82
GATE 5 -0.001 0.075 0.094 0.094 0.04 0.07 -0.001 95 80
IATE N -0.001 0.048 - 0.060 - - - 99 92
ATE 1 grf 0.003 0.032 0.041 0.041 0.12 0.01 0.001 95 82
GATE 5 cent 0.003 0.074 0.093 0.093 0.03 -0.00 -0.000 95 80
IATE N 0.003 0.047 - 0.059 - - - 99 92
ATE 1 dml  -0.002 0.033 0.042 0.042 0.07 -0.07 0.005 98 84
GATE 5 -0.002 0.074 0.093 0.093 -0.02 0.04 0.001 95 81
IATE N ols -0.002 0.167 - 0.210 - - - 32 21
IATE N rf -0.002 0.221 - 0.281 - - - - -
ATE 1 dml- -0.002 0.033 0.042 0.042 0.08 -0.07 0.004 97 84
GATE 5 norm -0.002 0.073 0.093 0.093 -0.02 0.06  0.000 95 80
IATE N ols -0.002 0.166 - 0.209 - - - 31 21
IATE N rf -0.002 0.218 - 0.278 - - - - -
ATE 1 ols -0.001 0.033 0.041 0.041 0.08 -0.05 -0.012 83 62
GATE 5 -0.001 0.072 0.091 0.091 -0.03 0.10 -0.026 84 64
IATE N -0.001 0.163 - 0.205 - - - 83 64

Note:  Table to be continued.
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Table C.1 - continued: No IATE, no selectivity

Estimation of effects Estimation of std. errors
# of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP  CovP
groups ator abs. dev. ness  Kurto-  (SE) (95) (80)
error sis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 10000
ATE 1 mcf  0.001 0.022 0.028 0.028 0.12 0.03  0.003 96 82
GATE 5 0.001 0.025 0.031 0.031 0.09 -0.30  0.002 97 84
IATE N 0.001 0.049 - 0.062 - - - 98 87
IATE eff N 0.000 0.035 - 0.043 - - - - -
ATE 1 mcf  0.003 0.022 0.027 0.028 0.14 -0.12  0.002 97 80
GATE 5 cent 0.003 0.020 0.030 0.030 0.11 -0.21  0.002 96 81
IATE N 0.003 0.048 - 0.060 - - - 97 84
IATE eff N 0.002 0.034 - 0.042 - - - - -
ATE 1 grf -0.001 0.015 0.020 0.020 -0.11 0.57 0.001 96 81
GATE 5 -0.001 0.037 0.047 0.047 -0.13 0.15 -0.001 94 80
IATE N -0.001 0.030 - 0.038 - - - 99.8 98
ATE 1 grf 0.002 0.016 0.020 0.020 0.02 0.13  0.000 96 79
GATE 5 cent 0.002 0.036 0.045 0.045 -0.10 -0.12 0.000 95 79
IATE N 0.002 0.030 - 0.038 - - - 99.9 98
ATE 1 dm/ -0.001 0.015 0.019 0.019 -0.11 -0.09 0.004 98 87
GATE 5 -0.001 0.036 0.045 0.045 0.04 0.03 0.001 95 81
IATE N ols -0.001 0.080 - 0.100 - - - 16 11
IATE N rf -0.001 0.153 - 0.195 - - - - -
ATE 1 dml- -0.001 0.015 0.019 0.019 -0.11 -0.08 0.004 98 87
GATE 5 norm -0.001 0.036 0.045 0.045 0.04 0.02  0.001 95 81
IATE N ols -0.001 0.079 - 0.100 - - - 16 11
IATE N rf -0.001 0.152 - 0.194 - - - - -
ATE 1 ols 0.000 0.015 0.019 0.019 -0.17 -0.04 -0.005 86 66
GATE 5 0.000 0.036 0.045 0.045 0.01 -0.03 -0.013 85 63
IATE N 0.035 0.079 - 0.100 - - - 84 64

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1'000 / 500 replications used for 2’500 / 10°000 obs.
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Table C.2: No IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.160 0.160 0.061 0.171 0.12 0.10 0.000 25 9
GATE 5 0.160 0.161 0.073 0.176  0.09 0.10 0.003 42 19
IATE N 0.160 0.167 - 0.194 - - - 77 48
IATE eff N 0.163 0.164 - 0.164 - - - - -
ATE 1 mcf 0.022 0.051 0.060 0.064 0.14 0.31 -0.001 94 76
GATE 5 cent 0.022 0.060 0.073 0.076 0.13 0.27 0.001 95 79
IATE N 0.022 0.086 - 0.109 - - - 96 82
IATE eff N 0.025 0.063 - 0.079 - - - - -
ATE 1 grf 0.091 0.092 0.043 0.101 -0.03 -0.23 -0.002 41 19
GATE 5 0.091 0.108 0.093 0.131 0.02 -0.00 -0.001 83 60
IATE N 0.090 0.094 - 0.109 - - - 88 66
ATE 1 grf 0.027 0.040 0.041 0.049 0.02 -0.25 -0.000 90 71
GATE 5 cent 0.027 0.076 0.091 0.095 0.01 0.11  0.001 94 78
IATE N 0.028 0.053 - 0.066 - - - 98 90
ATE 1 dml 0.016 0.038 0.044 0.048 0.00 -0.23  0.004 96 81
GATE 5 0.016 0.079 0.097 0.099 -0.05 -0.05 0.001 95 80
IATE N ols 0.017 0.176 - 0.221 - - - 33 22
IATE N rf 0.009 0.232 - 0.297 - - - - -
ATE 1 dml- 0.017 0.038 0.044 0.047 -0.01 -0.26 0.004 96 79
GATE 5 norm 0.017 0.079 0.097 0.099 -0.05 -0.05 0.001 95 79
IATE N ols 0.017 0.175 - 0.222 - - - 32 22
IATE N rf 0.010 0.231 - 0.299 - - - - -
ATE 1 ols 0.007 0.035 0.043 0.044 -0.01 -0.19 -0.012 84 62
GATE 5 0.007 0.077 0.093 0.096 -0.06 -0.01 -0.026 83 61
IATE N 0.007 0.165 - 0.208 - - - 83 63

Note:  Table to be continued.
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Table C.2- continued: No IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.138 0.138 0.028 0.141 0.15 -0.02 0.002 0 0
GATE 5 0.138 0.138 0.037 0.143 0.12 -0.14 0.001 11 4
IATE N 0.138 0.140 - 0.156 - - - 62 33
IATE eff N 0.138 0.138 - 0.148 - - - - -
ATE 1 mcf 0.001 0.021 0.027 0.027 0.27 0.03  0.003 97 84
GATE 5 cent 0.001 0.031 0.038 0.039 0.21 0.04  0.003 97 84
IATE N 0.001 0.056 - 0.071 - - - 97 84
IATE eff N 0.001 0.042 - 0.053 - - - - -
ATE 1 grf 0.059 0.059 0.020 0.062 -0.23 -0.20 0.000 16 7
GATE 5 0.059 0.064 0.046 0.075 -0.07 -0.14 -0.000 74 48
IATE N 0.058 0.061 - 0.070 - - - 98 85
ATE 1 grf 0.011 0.019 0.021 0.024 -0.13 0.21 -0.001 90 74
GATE 5 cent 0.011 0.038 0.046 0.048 -0.05 -0.10 -0.001 94 76
IATE N 0.013 0.033 - 0.041 - - - 99.8 97
ATE 1 dml 0.008 0.014 0.023 0.023 -0.02 0.31 0.003 96 82
GATE 5 0.009 0.040 0.049 0.050 0.12 0.05  0.000 94 80
IATE N ols 0.009 0.086 - 0.108 - - - 17 11
IATE N rf 0.004 0.161 - 0.207 - - - - -
ATE 1 dml- 0.009 0.018 0.021 0.023 -0.03 0.32 0.003 96 82
GATE 5 norm 0.009 0.040 0.049 0.050 0.12 0.04  0.000 94 80
IATE N ols 0.009 0.086 - 0.108 - - - 17 11
IATE N rf 0.004 0.160 - 0.207 - - - - -
ATE 1 ols 0.007 0.017 0.020 0.022 0.02 0.19 -0.005 84 64
GATE 5 0.007 0.038 0.046 0.053 0.09 0.13 -0.013 78 55
IATE N 0.007 0.083 - 0.104 - - - 83 63

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.3: No IATE, strong selectivity

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mef 0375 0375 0.063 0.380 0.03 -0.03  0.000 0 0
GATE 5 0.375 0.375 0.082 0.384 0.02 0.17 0.010 3 1
IATE N 0.375 0.375 - 0.394 - - - 21 6
IATE eff N 0.378 0.378 - 0.388 - - - - -
ATE 1 mcf 0.011 0.045 0.056 0.057 0.03 -0.13  0.008 97 85
GATE 5 cent 0.011 0.060 0.076 0.077 0.04 0.11 0.013 98 86
IATE N 0.011 0.091 - 0.115 - - - 97 86
IATE eff N 0.013  0.066 - 0.084 - - - - -
ATE 1 grf 0.264 0.264 0.049 0.268 -0.07 -0.03 -0.010 0 0
GATE 5 0.264 0.264 0.093 0.280 -0.06 -0.00 -0.005 17 6
IATE N 0.256 0.256 - 0.265 - - - 32 8
ATE 1 grf 0.068 0.070 0.045 0.081 0.03 -0.06 -0.006 58 35
GATE 5 cent 0.068 0.090 0.089 0.112 0.02 0.14 -0.001 87 67
IATE N 0.076 0.084 - 0.101 - - - 94 78
ATE 1 dml 0.136 0.137 0.058 0.148 -0.32 1.36 -0.003 32 14
GATE 5 0.136 0.155 0.124 0.185 -0.67 5.35 -0.014 69 48
IATE N ols 0.136 0.235 - 0.297 - - - 30 20
IATE N rf 0.114  0.290 - 0.480 - - - - -
ATE 1 dml- 0.129 0.129 0.055 0.140 -0.03 0.01  0.002 38 16
GATE 5 norm 0.129 0.148 0.121 0.177 -0.13 0.02 -0.005 76 54
IATE N ols 0.129 0.177 - 0.292 - - - 33 22
IATE N rf 0.129 0.296 - 0.401 - - - - -
ATE 1 ols 0.109 0.110 0.053 0.121 0.00 0.04 -0.014 25 12
GATE 5 0.109 0.117 0.102 0.152 -0.03 0.01 -0.029 60 41
IATE N 0.109 0.192 - 0.240 - - - 77 56

Note:  Table to be continued.
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Table C.3 - continued: No IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.334 0.334 0.030 0.336 -0.03 0.60 0.001 0 0
GATE 5 0.334 0.334 0.045 0.337 -0.07 0.08 0.006 0 0
IATE N 0.334 0.334 - 0.345 - - - 5 1
IATE eff N 0.335 0.335 - 0.340 - - - - -
ATE 1 mcf -0.041 0.043 0.027 0.049 0.17 0.38 0.006 80 48
GATE 5 cent -0.041 0.048 0.041 0.058 -0.07 0.06  0.008 90 70
IATE N -0.041 0.073 - 0.091 - - - 94 69
IATE eff N -0.041 0.060 - 0.074 - - - - -
ATE 1 grf 0.192 0.192 0.024 0.194 -0.37 0.18 -0.004 0 0
GATE 5 0.192 0.192 0.047 0.198 -0.00 -0.01 -0.002 2 0
IATE N 0.187 0.187 - 0.193 - - - 53 18
ATE 1 grf 0.027 0.031 0.025 0.037 -0.08 -0.07 -0.005 68 45
GATE 5 cent 0.027 0.044 0.047 0.055 -0.09 0.06 -0.003 90 69
IATE N 0.039 0.049 - 0.061 - - - 99 94
ATE 1 dml 0.079 0.079 0.034 0.086 0.034 0.54 3.01 27 11
GATE 5 0.079 0.091 0.076 0.111 0.076 0.20 6.61 66 46
IATE N ols 0.079 0.133 - 0.171 - - - 16 11
IATE N rf 0.061 0.208 - 0.411 - - - - -
ATE 1 dml- 0.070 0.070 0.031 0.077 0.000 0.15 0.33 37 18
GATE 5 norm 0.070 0.084 0.071 0.101 -0.007 -0.07 0.13 75 54
IATE N ols 0.070 0.129 - 0.162 - - - 18 12
IATE N rf 0.051 0.213 - 0.336 - - - - -
ATE 1 ols 0.111 0.111 0.026 0.111 0.10 -0.32 -0.007 0 0
GATE 5 0.111 0.113 0.051 0.126 0.04 -0.10 -0.015 26 14
IATE N 0.111 0.129 - 0.156 - - - 61 41

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'500 / 10°000
observations.
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Table C.4: Linear IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf -0.004 0.049 0.062 0.062 -0.02 -0.06 -0.021 96 80
GATE 5 -0.004 0.091 0.078 0.114 0.00 0.19 0.001 83 61
IATE N -0.004 0.200 - 0.252 - - - 69 49
IATE eff N -0.004 0.193 - 0.242 - - - - -
ATE 1 mcf 0.002 0.049 0.062 0.062 0.01 0.08 -0.001 95 78
GATE 5 cent 0.001 0.095 0.080 0.118 0.01 0.22 -0.008 75 55
IATE N 0.002  0.208 - 0.261 - - - 62 43
IATE eff N 0.004 0.201 - 0.252 - - - - -
ATE 1 grf -0.001 0.034 0.043 0.043 -0.15 0.01 0.000 95 82
GATE 5 -0.001 0.077 0.097 0.097 0.03 0.07 -0.001 95 80
IATE N -0.001 0.214 - 0.268 - - - 57 40
ATE 1 grf 0.004 0.033 0.042 0.042 0.09 0.02 0.001 94 81
GATE 5 cent 0.004 0.075 0.094 0.094 0.04 0.04  0.000 95 80
IATE N 0.004 0.212 - 0.266 - - - 56 40
ATE 1 dm/  -0.002 0.034 0.042 0.042 0.06 -0.07 0.005 98 84
GATE 5 -0.002 0.075 0.095 0.095 -0.02 0.04 0.001 95 81
IATE N ols -0.002 0.168 - 0.212 - - - 34 22
IATE N rf -0.002 0.245 - 0.310 - - - - -
ATE 1 dml- -0.002 0.034 0.042 0.042 0.06 -0.07 0.005 97 83
GATE 5 norm -0.002 0.075 0.095 0.095 -0.02 0.06  0.000 95 80
IATE N ols -0.002 0.167 - 0.210 - - - 32 21
IATE N rf -0.002 0.244 - 0.308 - - - - -
ATE 1 ols -0.001 0.033 0.042 0.042 0.01 -0.08 -0.013 81 62
GATE 5 -0.002 0.073 0.092 0.092 -0.04 0.09 -0.027 84 64
IATE N -0.001 0.163 - 0.205 - - - 83 63

Note:  Table to be continued.
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Table C.4 - continued: Linear IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.001 0.023 0.029 0.029 0.108 -0.20 0.004 98 82
GATE 5 0.000 0.066 0.042 0.080 -0.04 -0.27  0.000 67 46
IATE N 0.001 0.162 - 0.205 - - - 61 43
IATE eff N 0.000 0.158 - 0.201 - - - - -
ATE 1 mcf 0.003 0.022 0.028 0.028 0.13 -0.15 0.002 97 79
GATE 5 cent 0.003 0.062 0.047 0.077 0.01 -0.25 -0.008 65 46
IATE N 0.003 0.171 - 0.216 - - - 52 36
IATE eff N 0.002 0.168 - 0.212 - - - - -
ATE 1 grf -0.000 0.015 0.020 0.020 -0.11 0.51 0.001 96 82
GATE 5 -0.001 0.037 0.047 0.047 -0.15 0.18 -0.000 94 81
IATE N -0.001 0.175 - 0.221 - - - 61 44
ATE 1 grf 0.003 0.016 0.020 0.021 0.02 0.15 -0.000 96 82
GATE 5 cent 0.003 0.036 0.045 0.045 -0.07 -0.10 0.001 95 80
IATE N 0.003 0.174 - 0.219 - - - 61 44
ATE 1 dm/  -0.001 0.016 0.020 0.020 -0.10 0.00 0.004 98 86
GATE 5 -0.001 0.037 0.046 0.046 0.02 0.01 0.001 95 82
IATE N ols -0.001 0.080 - 0.101 - - - 16 11
IATE N rf -0.001 0.187 - 0.236 - - - - -
ATE 1 dml- -0.001 0.016 0.020 0.020 -0.11 -0.01 0.003 98 86
GATE 5 norm -0.001 0.037 0.046 0.046 0.02 0.01 0.001 95 82
IATE N ols -0.001 0.080 - 0.101 - - - 17 11
IATE N rf -0.001 0.186 - 0.235 - - - - -
ATE 1 ols -0.000 0.016 0.020 0.020 -0.16 0.01 -0.005 84 65
GATE 5 -0.001 0.037 0.045 0.046 -0.01 0.01 -0.013 84 64
IATE N 0.000 0.079 - 0.100 - - - 84 64

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.5: Linear IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.225 0.225 0.063 0.234 0.11 0.11 0.001 6 1
GATE 5 0.225 0.227 0.081 0.252 0.05 0.09 0.001 29 16
IATE N 0.225 0.280 - 0.340 - - - 53 36
IATE eff N 0.228 0.276 - 0.333 - - - - -
ATE 1 mcf 0.056 0.067 0.061 0.082 0.09 0.28 -0.001 84 63
GATE 5 cent 0.055 0.102 0.080 0.126 0.06 0.17 -0.003 76 54
IATE N 0.056 0.215 - 0.269 - - - 62 43
IATE eff N 0.059 0.208 - 0.260 - - - - -
ATE 1 grf 0.128 0.128 0.044 0.135 -0.04 -0.23 -0.002 16 5
GATE 5 0.128 0.137 0.096 0.161 0.01 -0.02 -0.002 72 47
IATE N 0.122 0.248 - 0.309 - - - 49 33
ATE 1 grf 0.050 0.055 0.042 0.065 0.02 -0.18 -0.000 77 53
GATE 5 cent 0.050 0.086 0.093 0.108 0.01 0.08 0.000 91 72
IATE N 0.049 0.230 - 0.287 - - - 51 36
ATE 1 dml 0.030 0.044 0.045 0.054 -0.02 -0.23 0.004 93 72
GATE 5 0.030 0.083 0.099 0.104 -0.06 -0.05 0.001 94 78
IATE N ols 0.031 0.179 - 0.225 - - - 33 22
IATE N rf 0.020 0.258 - 0.328 - - - - -
ATE 1 dml- 0.032 0.044 0.045 0.055 -0.02 -0.21 0.004 93 73
GATE 5 norm 0.032 0.083 0.099 0.104 -0.05 -0.05 0.001 94 78
IATE N ols 0.032 0.178 - 0.225 - - - 33 22
IATE N rf 0.021 0.257 - 0.327 - - - - -
ATE 1 ols 0.007 0.036 0.031 0.044 -0.04 -0.16 -0.013 83 61
GATE 5 0.006 0.078 0.094 0.097 -0.06 -0.01 -0.027 82 61
IATE N 0.007 0.165 - 0.208 - - - 83 61

Note:  Table to be continued.

96



Table C.5 - continued: Linear IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0191 0.191 0.029 0.192 0.14 -0.10 0.003 0 0
GATE 5 0.191 0.191 0.044 0.206 0.12 -0.16  0.000 14 7
IATE N 0.191 0.236 - 0.284 - - - 43 28
IATE eff N 0.191 0.233 - 0.279 - - - - -
ATE 1 mcf 0.026 0.031 0.027 0.037 0.21 0.20 0.003 90 66
GATE 5 cent 0.025 0.064 0.044 0.078 0.19 0.06  -0.002 69 48
IATE N 0.026 0.177 - 0.223 - - - 53 36
IATE eff N 0.026 0.173 - 0.219 - - - - -
ATE 1 grf 0.084 0.084 0.020 0.087 -0.22 -0.32 0.001 2 0
GATE 5 0.084 0.086 0.047 0.098 -0.07 -0.11 -0.000 55 30
IATE N 0.078 0.204 - 0.254 - - - 53 37
ATE 1 grf 0.024 0.027 0.022 0.033 -0.10 0.20 -0.001 79 50
GATE 5 cent 0.025 0.046 0.047 0.057 -0.02 -0.08 -0.001 88 68
IATE N 0.024 0.195 - 0.244 - - - 55 38
ATE 1 dml 0.018 0.023 0.022 0.028 -0.07 0.51 0.003 90 74
GATE 5 0.018 0.042 0.049 0.053 0.12 0.00 0.000 93 78
IATE N ols 0.018 0.087 - 0.110 - - - 17 11
IATE N rf 0.011 0.195 - 0.248 - - - - -
ATE 1 dml- 0.018 0.023 0.022 0.028 -0.08 0.53  0.003 90 74
GATE 5 norm 0.018 0.042 0.049 0.053 0.12 -0.01 0.000 93 78
IATE N ols 0.019 0.087 - 0.110 - - - 17 11
IATE N rf 0.011 0.195 - 0.248 - - - - -
ATE 1 ols 0.007 0.017 0.021 0.022 0.05 0.17 -0.015 81 66
GATE 5 0.007 0.043 0.042 0.053 0.08 0.12 -0.014 77 56
IATE N 0.007 0.083 - 0.104 - - - 83 66

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.6: Linear IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.528 0.528 0.065 0.532 0.03 0.06 -0.001 0 0
GATE 5 0.528 0.528 0.086 0.532 0.03 0.09 0.009 1 0
IATE N 0.528 0.535 - 0.597 - - - 20 11
IATE eff N 0.531 0.536 - 0.593 - - - - -
ATE 1 mcf 0.085 0.088 0.057 0.102 0.03 -0.06  0.007 76 49
GATE 5 cent 0.084 0.120 0.078 0.157 0.01 0.11  0.012 73 52
IATE N 0.085 0.241 - 0.301 - - - 61 42
IATE eff N 0.087 0.234 - 0.292 - - - - -
ATE 1 grf 0.348 0.348 0.050 0.352 -0.05 -0.07 -0.010 0 0
GATE 5 0.348 0.348 0.096 0.372 -0.06 -0.03 -0.005 10 3
IATE N 0.331 0.382 - 0.461 - - - 32 21
ATE 1 grf 0.117 0.118 0.046 0.126 0.04 -0.07 -0.006 19 7
GATE 5 cent 0.118 0.142 0.090 0.175 0.02 0.15 -0.002 65 47
IATE N 0.120 0.274 - 0.342 - - - 46 31
ATE 1 dml 0.197 0.198 0.060 0.207 -0.57 3.72 -0.003 9 2
GATE 5 0.197 0.208 0.129 0.208 -0.95 10.36 -0.016 54 33
IATE N ols 0.198 0.278 - 0.347 - - - 26 17
IATE N rf 0.170 0.344 - 0.568 - - - - -
ATE 1 dml- 0.188 0.188 0.056 0.196 -0.02 -0.02 0.002 9 2
GATE 5 norm 0.188 0.197 0.123 0.229 -0.13 0.02 -0.016 61 39
IATE N ols 0.189 0.271 - 0.336 - - - 29 20
IATE N rf 0.159 0.344 - 0.450 - - - - -
ATE 1 ols 0.109 0.1120 0.053 0.121 -0.03 -0.09 -0.015 25 12
GATE 5 0.109 0.127 0.103 0.153 -0.04 0.01 -0.030 60 41
IATE N 0.109 0.193 - 0.240 - - - 77 57

Note:  Table to be continued.
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Table C.6 - continued: Linear IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0469 0469 0.031 0.470 -0.08 0.68 0.001 0 0
GATE 5 0.468 0.468 0.048 0.477 -0.06 0.08 0.005 0 0
IATE N 0.469 0.475 - 0.526 - - - 13 7
IATE eff N 0.469 0.475 - 0.523 - - - - -
ATE 1 mcf 0.012 0.024 0.028 0.030 0.26 0.68  0.005 98 85
GATE 5 cent 0.012 0.093 0.042 0.113 -0.03 0.15  0.007 57 38
IATE N 0.012 0.208 - 0.263 - - - 51 35
IATE eff N 0.012 0.204 - 0.258 - - - - -
ATE 1 grf 0.256 0.256 0.024 0.257 -0.31 0.07 -0.004 0 0
GATE 5 0.255 0.255 0.049 0.274 0.00 -0.05 -0.002 4 2
IATE N 0.240 0.317 - 0.388 - - - 38 25
ATE 1 grf 0.058 0.058 0.026 0.064 -0.08 -0.07 -0.006 24 10
GATE 5 cent 0.058 0.096 0.048 0.119 -0.10 0.04 -0.003 54 38
IATE N 0.065 0.251 - 0.314 - - - 47 32
ATE 1 dml 0.127 0.127 0.035 0.132 0.47 3.25 -0.003 6 2
GATE 5 0.127 0.133 0.078 0.153 -0.02 7.79 -0.024 44 26
IATE N ols 0.128 0.169 - 0.211 - - - 13 9
IATE N rf 0.104 0.259 - 0.462 - - - - -
ATE 1 dm/- 0117 0.117 0.032 0.121 0.47 3.25 -0.003 6 2
GATE 5 norm 0.117 0.122 0.072 0.141 -0.02 7.79 -0.024 44 26
IATE N ols 0.117 o0.161 - 0.199 - - - 13 9
IATE N rf 0.092 0.259 - 0.374 - - - - -
ATE 1 ols 0.111 0.111 0.027 0.114 -0.08 -0.28 -0.008 0 0
GATE 5 0.111 0.112 0.051 0.126 0.02 -0.10 -0.015 25 14
IATE N 0.111 0.129 - 0.156 - - - 60 40

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.7: Nonlinear IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.000 0.048 0.060 0.060 0.03 0.00 0.006 97 85
GATE 5 -0.001 0.080 0.077 0.110 0.06 0.25 0.004 86 65
IATE N -0.001 0.208 - 0.252 - - - 70 48
IATE eff N -0.001 0.201 - 0.240 - - - - -
ATE 1 mcf 0.002 0.049 0.062 0.062 0.00 0.06 -0.001 94 78
GATE 5 cent 0.002 0.095 0.081 0.118 0.02 0.20 -0.008 76 55
IATE N 0.002 0.220 - 0.264 - - - 56 37
IATE eff N 0.004 0.214 - 0.255 - - - - -
ATE 1 grf -0.001 0.034 0.043 0.043 -0.15 0.03  0.000 95 82
GATE 5 -0.001 0.077 0.097 0.097 0.03 0.07 -0.001 95 80
IATE N -0.001 0.229 - 0.271 - - - 50 33
ATE 1 grf 0.004 0.033 0.042 0.042 0.10 0.04  0.000 94 81
GATE 5 cent 0.004 0.075 0.094 0.095 0.04 0.06  0.000 95 80
IATE N 0.004 0.228 - 0.269 - - - 49 33
ATE 1 dm/  -0.002 0.034 0.042 0.043 0.05 -0.07 0.005 98 84
GATE 5 -0.002 0.076 0.095 0.095 -0.01 0.04 0.001 95 81
IATE N ols -0.002 0.172 - 0.218 - - - 32 21
IATE N rf -0.002 0.248 - 0.313 - - - - -
ATE 1 dml- -0.002 0.034 0.043 0.043 0.06 -0.06  0.005 97 83
GATE 5 norm -0.002 0.075 0.095 0.095 -0.02 0.06  0.000 95 80
IATE N ols -0.002 0.171 - 0.218 - - - 31 21
IATE N rf -0.002 0.246 - 0.313 - - - - -
ATE 1 ols -0.001 0.034 0.042 0.042 0.05 -0.09 -0.013 82 74
GATE 5 -0.002 0.073 0.092 0.092 -0.03 0.09 -0.027 84 64
IATE N -0.001 0.168 - 0.212 - - - 84 64

Note:  Table to be continued.
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Table C.7 - continued: Nonlinear IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.000 0.022 0.030 0.030 0.25 0.03  0.003 98 86
GATE 5 -0.001 0.059 0.042 0.073 0.08 -0.04 0.001 75 53
IATE N 0.000 0.169 - 0.203 - - - 61 41
IATE eff N 0.000 0.165 - 0.197 - - - - -
ATE 1 mcf 0.003 0.022 0.028 0.028 0.11 -0.15 0.002 97 78
GATE 5 cent 0.003 0.062 0.048 0.077 0.01 -0.23  -0.009 66 47
IATE N 0.003 0.183 - 0.218 - - - 45 30
IATE eff N 0.002 0.180 - 0.214 - - - - -
ATE 1 grf -0.000 0.016 0.020 0.020 -0.10 0.50 0.001 96 83
GATE 5 -0.001 0.037 0.048 0.048 -0.16 0.19 -0.000 94 81
IATE N -0.001 0.189 - 0.223 - - - 54 36
ATE 1 grf 0.003 0.016 0.020 0.021 0.02 0.15  0.000 96 79
GATE 5 cent 0.003 0.036 0.045 0.045 -0.07 -0.09 0.001 95 80
IATE N 0.003 0.187 - 0.221 - - - 54 36
ATE 1 dm/ -0.001 0.016 0.020 0.020 -0.09 -0.01 0.004 98 86
GATE 5 -0.001 0.037 0.046 0.046 0.02 0.01 0.001 95 82
IATE N ols -0.001 0.088 - 0.111 - - - 15 10
IATE N rf -0.001 0.189 - 0.239 - - - - -
ATE 1 dml- -0.001 0.016 0.020 0.020 -0.09 -0.02 0.003 98 86
GATE 5 norm -0.001 0.037 0.046 0.046 0.02 0.00 0.001 95 82
IATE N ols -0.001 0.087 - 0.111 - - - 15 10
IATE N rf -0.001 0.189 - 0.239 - - - - -
ATE 1 ols 0.000 0.016 0.020 0.020 0.01 -0.01 -0.005 84 66
GATE 5 -0.001 0.037 0.045 0.046 0.01 0.01 -0.013 84 64
IATE N 0.000 0.087 - 0.111 - - - 81 64

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.

101



Table C.8: Nonlinear IATE, medium selectivity

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0219 0.219 0.060 0.227 -0.03 -0.14 0.004 6 1
GATE 5 0.219 0.221 0.080 0.244 0.07 0.07  0.005 31 18
IATE N 0.219 0.276 - 0.336 - - - 58 41
IATE eff N 0.219 0.268 - 0.336 - - - - -
ATE 1 mcf 0.056 0.067 0.061 0.083 0.09 0.29 -0.001 84 64
GATE 5 cent 0.056 0.102 0.081 0.126 0.05 0.15 -0.003 77 54
IATE N 0.056 0.225 - 0.271 - - - 57 38
IATE eff N 0.059 - 0.261 - - - - -
ATE 1 grf 0.128 0.128 0.044 0.135 -0.04 -0.24 -0.002 16 5
GATE 5 0.128 0.137 0.097 0.162 0.01 -0.04 -0.002 71 47
IATE N 0.123  0.259 - 0.310 - - - 45 30
ATE 1 grf 0.050 0.055 0.042 0.065 0.03 -0.16  -0.000 77 52
GATE 5 cent 0.050 0.087 0.093 0.108 0.01 0.08 -0.000 91 72
IATE N 0.050 0.244 - 0.289 - - - 45 30
ATE 1 dml 0.030 0.043 0.045 0.054 -0.02 -0.21 0.004 93 73
GATE 5 0.029 0.083 0.099 0.104 -0.05 -0.05 0.001 94 79
IATE N ols 0.030 0.183 - 0.230 - - - 32 22
IATE N rf 0.019 0.260 - 0.331 - - - - -
ATE 1 dml- 0.031 0.044 0.045 0.055 -0.03 -0.24 0.004 93 72
GATE 5 norm 0.031 0.083 0.099 0.104 -0.05 -0.05 0.001 94 78
IATE N ols 0.031 0.182 - 0.230 - - - 32 21
IATE N rf 0.020 0.259 - 0.330 - - - - -
ATE 1 ols 0.008 0.036 0.044 0.045 -0.04 -0.16 -0.013 83 60
GATE 5 0.008 0.079 0.094 0.098 -0.06 -0.06 -0.027 82 61
IATE N 0.008 0.170 - 0.215 - - - 82 62

Note:  Table to be continued.
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Table C.8 - continued: Nonlinear IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0181 0.181 0.030 0.184 0.22 -0.47 0.002 0 0
GATE 5 0.181 0.181 0.044 0.194 0.14 0.20 0.002 13 7
IATE N 0.181 0.228 - 0.275 - - - 50 35
IATE eff N 0.181 0.223 - 0.269 - - - - -
ATE 1 mcf 0.026 0.031 0.027 0.038 0.21 0.26  0.003 90 68
GATE 5 cent 0.025 0.063 0.045 0.077 0.18 0.05 -0.002 70 50
IATE N 0.026  0.187 - 0.223 - - - 47 31
IATE eff N 0.026 0.184 - 0.219 - - - - -
ATE 1 grf 0.084 0.084 0.020 0.086 -0.22 -0.35 0.001 2 0
GATE 5 0.084 0.086 0.047 0.097 -0.08 -0.14 -0.000 55 30
IATE N 0.078 0.214 - 0.254 - - - 48 32
ATE 1 grf 0.024 0.027 0.022 0.033 -0.08 0.18 -0.001 78 51
GATE 5 cent 0.024 0.046 0.047 0.056 -0.03 -0.10 -0.001 89 69
IATE N 0.024 0.207 - 0.244 - - - 48 32
ATE 1 dml 0.017 0.022 0.022 0.028 -0.05 0.49  0.003 91 75
GATE 5 0.017 0.042 0.049 0.053 0.12 -0.01 0.000 94 78
IATE N ols 0.018 0.094 - 0.120 - - - 16 10
IATE N rf 0.010 0.198 - 0.251 - - - - -
ATE 1 dml- 0.017 0.022 0.022 0.028 -0.07 0.50 0.003 90 74
GATE 5 norm 0.017 0.042 0.049 0.053 0.12 -0.01 0.000 93 78
IATE N ols 0.018 0.094 - 0.120 - - - 16 10
IATE N rf 0.011 0.198 - 0.251 - - - - -
ATE 1 ols 0.009 0.018 0.021 0.023 0.07 0.16  -0.005 81 65
GATE 5 0.008 0.039 0.047 0.055 0.08 0.12 -0.013 75 53
IATE N 0.009 0.091 - 0.116 - - - 79 59

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.9: Nonlinear IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0517 0517 0.062 0.521 -0.07 -0.05 0.002 0 0
GATE 5 0.517 0.517 0.087 0.532 0.01 0.05 0.012 1 0
IATE N 0.518 0.520 - 0.589 - - - 28 16
IATE eff N 0.518 0.520 - 0.581 - - - - -
ATE 1 mcf 0.091 0.094 0.057 0.108 0.03 -0.04 0.007 73 44
GATE 5 cent 0.091 0.129 0.078 0.160 0.04 0.12 0.012 72 51
IATE N 0.091 0.252 - 0.303 - - - 56 38
IATE eff N 0.093 0.246 - 0.294 - - - - -
ATE 1 grf 0.356 0.356 0.051 0.359 -0.04 -0.09 -0.010 0 0
GATE 5 0.356 0.356 0.096 0.379 -0.06 -0.05 -0.006 9 3
IATE N 0.341 0.386 - 0.469 - - - 35 24
ATE 1 grf 0.124 0.125 0.046 0.133 0.04 -0.08 -0.006 15 5
GATE 5 cent 0.125 0.146 0.091 0.178 0.02 0.15 -0.002 64 45
IATE N 0.128 0.289 - 0.346 - - - 41 27
ATE 1 dml 0.198 0.199 0.061 0.207 -0.53 3.20 -0.003 9 2
GATE 5 0.198 0.208 0.130 0.240 -0.89 9.06 -0.016 53 33
IATE N ols 0.199 0.280 - 0.350 - - - 26 17
IATE N rf 0.170 0.345 - 0.563 - - - - -
ATE 1 dm/- 0.189 0.189 0.057 0.197 -0.02 -0.01 0.002 11 3
GATE 5 norm 0.188 0.198 0.124 0.228 -0.13 0.03  -0.005 62 39
IATE N ols 0.189 0.273 - 0.339 - - - 30 20
IATE N rf 0.159 0.346 - 0.452 - - - - -
ATE 1 ols 0.124 0.125 0.053 0.135 -0.03 0.10 -0.015 17 8
GATE 5 0.124 0.139 0.103 0.165 -0.04 0.01 -0.030 55 36
IATE N 0.124 0.202 - 0.253 - - - 75 54

Note:  Table to be continued.
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Table C.9 - continued: Nonlinear IATE, strong selectivity

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 10’000
ATE 1 mcf 0455 0455 0.032 0.456 -0.02 -0.16 0.001 0 0
GATE 5 0.455 0.455 0.048 0.463 -0.02 -0.14 0.007 0 0
IATE N 0.455 0.458 - 0.513 - - - 21 12
IATE eff N 0.453 0.454 - 0.506 - - - - -
ATE 1 mcf 0.017 0.026 0.028 0.033 0.26 0.69  0.005 96 83
GATE 5 cent 0.017 0.091 0.043 0.110 -0.03 0.12 0.007 59 40
IATE N 0.017 0.218 - 0.260 - - - 45 30
IATE eff N 0.018 0.215 - 0.255 - - - - -
ATE 1 grf 0.261 0.261 0.024 0.262 -0.27 -0.01 -0.004 0 0
GATE 5 0.261 0.261 0.049 0.278 0.03 -0.02 -0.002 3 1
IATE N 0.248 0.322 - 0.392 - - - 38 25
ATE 1 grf 0.063 0.063 0.026 0.068 -0.06 -0.11 -0.006 20 8
GATE 5 cent 0.064 0.095 0.049 0.118 -0.10 0.01 -0.003 54 37
IATE N 0.072  0.265 - 0.314 - - - 41 27
ATE 1 dml 0.126 0.126 0.035 0.130 0.51 3.24  -0.003 6 2
GATE 5 0.125 0.131 0.078 0.150 0.02 7.37 -0.014 45 26
IATE N ols 0.126  0.170 - 0.212 - - - 13 9
IATE N rf 0.102 0.259 - 0.459 - - - - -
ATE 1 dml- 0.114 0.114 0.032 0.119 0.16 0.35 0.000 6 2
GATE 5 norm 0.114 0.120 0.072 0.138 -0.10 0.17 -0.006 54 35
IATE N ols 0.115 0.162 - 0.200 - - - 15 10
IATE N rf 0.089 0.260 - 0.375 - - - - -
ATE 1 ols 0.126 0.126 0.027 0.129 0.08 -0.12  -0.008 0 0
GATE 5 0.126 0.127 0.052 0.140 0.02 -0.11  -0.015 20 11
IATE N 0.126 0.145 - 0.175 - - - 55 36

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.10: Quadratic IATE, no selectivity

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf -0.003 0.053 0.065 0.065 0.01 -0.22  0.001 96 80
GATE 5 -0.003 0.090 0.074 0.110 0.06 0.02  0.003 81 59
IATE N -0.003 0.450 - 0.648 - - - 30 18
IATE eff N -0.003 0.448 - 0.644 - - - - -
ATE 1 mcf  0.002 0.053 0.065 0.065 0.00 -0.07 -0.001 95 80
GATE 5 cent 0.002 0.091 0.074 0.110 0.07 0.20 -0.002 79 55
IATE N 0.002 0.455 - 0.653 - - - 27 55
IATE eff N 0.004 0.453 - 0.649 - - - - -
ATE 1 grf -0.002 0.037 0.046 0.046 -0.13 0.06 -0.001 95 80
GATE 5 -0.002 0.082 0.103 0.103 0.01 -0.03 -0.001 95 80
IATE N -0.001 0.465 - 0.668 - - - 24 15
ATE 1 grf 0.003 0.036 0.045 0.045 0.04 -0.03  0.000 95 81
GATE 5 cent 0.003 0.081 0.101 0.101 -0.02 -0.02 -0.000 95 79
IATE N 0.004 0.465 - 0.665 - - - 23 15
ATE 1 dml  -0.001 0.036 0.045 0.046 -0.01 0.01  0.005 97 84
GATE 5 -0.002 0.080 0.101 0.101 0.00 0.06  0.002 95 81
IATE N ols -0.002 0.505 - 0.720 - - - 13 8
IATE N rf -0.004 0.446 - 0.626 - - - - -
ATE 1 dml- -0.002 0.036 0.046 0.046 -0.01 0.01 0.004 97 83
GATE 5 norm -0.002 0.080 0.101 0.101 0.00 0.07  0.000 95 80
IATE N ols -0.002 0.505 - 0.720 - - - 12 8
IATE N rf -0.004 0.444 - 0.625 - - - - -
ATE 1 ols -0.002 0.037 0.046 0.046 0.04 0.03 -0.014 85 61
GATE 5 -0.002 0.080 0.101 0.101 o0.01 0.09 -0.029 83 65
IATE N -0.002 0.505 - 0.720 - - - 39 25

Note:  Table to be continued.
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Table C.10 - continued: Quadratic IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.001 0.024 0.030 0.030 0.22 -0.02 0.004 97 84
GATE 5 0.001 0.062 0.040 0.073 0.15 -0.15 0.001 68 45
IATE N 0.001 0.405 - 0.584 - - - 21 13
IATE eff N 0.000 0.404 - 0.583 - - - - -
ATE 1 mcf 0.002 0.024 0.029 0.029 0.21 0.01 0.002 96 82
GATE 5 cent 0.002 0.059 0.042 0.070 0.16 -0.09 -0.002 69 45
IATE N 0.002 0.409 - 0.588 - - - 19 12
IATE eff N 0.002 0.408 - 0.586 - - - - -
ATE 1 grf -0.001 0.017 0.021 0.021 -0.02 0.21 0.001 95 83
GATE 5 -0.001 0.041 0.051 0.051 -0.06 -0.115 -0.001 94 79
IATE N -0.001 0.423 - 0.607 - - - 25 16
ATE 1 grf 0.002 0.018 0.022 0.022 -0.01 -0.13 0.000 96 79
GATE 5 cent 0.002 0.039 0.048 0.048 -0.08 -0.08 0.001 96 81
IATE N 0.002 0.422 - 0.605 - - - 25 16
ATE 1 dml 0.000 0.016 0.020 0.020 0.00 -0.12 0.004 99 86
GATE 5 0.000 0.039 0.049 0.049 0.06 -0.07 0.001 95 81
IATE N ols 0.000 0.483 - 0.693 - - - 3 2
IATE N rf -0.004 0.339 - 0.479 - - - - -
ATE 1 dml- 0.000 0.016 0.020 0.020 0.00 -0.13  0.004 99 86
GATE 5 norm 0.000 0.039 0.049 0.049 0.06 -0.06 0.001 96 81
IATE N ols 0.000 0.483 - 0.693 - - - 3 2
IATE N rf -0.004 0.339 - 0.479 - - - - -
ATE 1 ols 0.001 0.016 0.021 0.021 0.02 0.09 -0.005 84 68
GATE 5 0.000 0.040 0.050 0.050 0.00 -0.04 -0.014 83 64
IATE N 0.000 0.483 - 0.693 - - - 17 11

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.11: Quadratic IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.123 0.124 0.064 0.139 0.10 0.08 0.001 52 27
GATE 5 0.123 0.155 0.082 0.179 0.11 0.02  0.003 54 35
IATE N 0.123 0.504 - 0.667 - - - 25 16
IATE eff N 0.123 0.503 - 0.663 - - - - -
ATE 1 mcf -0.036 0.059 0.064 0.074 0.05 0.25 -0.002 90 73
GATE 5 cent -0.036 0.099 0.080 0.127 0.25 0.18 -0.001 79 60
IATE N -0.036 0.446 - 0.660 - - - 31 19
IATE eff N -0.034 0.444 - 0.656 - - - - -
ATE 1 grf 0.030 0.044 0.045 0.054 -0.05 -0.14 -0.001 90 68
GATE 5 0.030 0.100 0.099 0.125 0.05 0.01 -0.001 88 68
IATE N 0.014 0.480 - 0.682 - - - 22 14
ATE 1 grf -0.046 0.053 0.044 0.064 0.05 -0.30 -0.001 79 57
GATE 5 cent -0.046 0.100 0.096 0.128 -0.02 0.10 0.001 86 69
IATE N -0.057 0.456 - 0.682 - - - 25 16
ATE 1 dm/  -0.014 0.040 0.048 0.050 -0.04 -0.22 0.004 96 82
GATE 5 -0.014 0.090 0.104 0.113 -0.04 0.02  0.002 93 77
IATE N ols -0.014 0.509 - 0.730 - - - 14 9
IATE N rf -0.019 0.467 - 0.667 - - - - -
ATE 1 dml/- -0.013 0.040 0.048 0.050 -0.04 -0.25 0.004 96 82
GATE 5 norm -0.013 0.090 0.104 0.113 -0.02 0.02 0.002 93 77
IATE N ols -0.014 0.508 - 0.730 - - - 14 9
IATE N rf -0.019 0.467 - 0.666 - - - - -
ATE 1 ols -0.104 0.105 0.049 0.115 0.01 -0.10 -0.016 20 10
GATE 5 -0.104 0.156 0.101 0.156 -0.05 0.02 -0.031 56 41
IATE N -0.104 0.526 - 0.798 - - - 56 41

Note:  Table to be continued.
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Table C.11 - continued: Quadratic IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.092 0.092 0.029 0.097 0.25 0.05 0.003 18 3
GATE 5 0.091 0.124 0.045 0.137 0.26 0.14  0.002 33 17
IATE N 0.091 0.452 - 0.612 - - - 19 12
IATE eff N 0.091 0.451 - 0.609 - - - - -
ATE 1 mcf -0.059 0.060 0.029 0.066 0.29 0.42  0.002 53 24
GATE 5 cent -0.060 0.079 0.044 0.106 0.28 0.21  0.000 68 51
IATE N -0.060 0.401 - 0.611 - - - 23 15
IATE eff N -0.059 0.399 - 0.608 - - - - -
ATE 1 grf -0.002 0.017 0.021 0.021 -0.22 0.03 0.001 95 82
GATE 5 -0.002 0.060 0.049 0.076 -0.04 -0.13 -0.001 82 60
IATE N -0.030 0.446 - 0.655 - - - 22 14
ATE 1 grf -0.061 0.061 0.023 0.065 -0.06 0.41 -0.001 20 8
GATE 5 cent -0.061 0.073 0.050 0.095 -0.02 -0.21 -0.001 71 53
IATE N -0.083 0.432 - 0.662 - - - 25 16
ATE 1 dm/  -0.012 0.021 0.023 0.026 0.02 0.03  0.003 94 80
GATE 5 -0.013 0.048 0.053 0.062 0.07 0.02  0.000 91 74
IATE N ols -0.013 0.482 - 0.698 - - - 3 2
IATE N rf -0.016 0.370 - 0.537 - - - - -
ATE 1 dml- -0.012 0.021 0.023 0.026 0.02 0.03  0.003 94 80
GATE 5 norm -0.013 0.048 0.053 0.062 0.07 0.01 0.000 91 74
IATE N ols -0.013 0.482 - 0.698 - - - 3 2
IATE N rf -0.016 0.370 - 0.537 - - - - -
ATE 1 ols -0.104 0.104 0.023 0.107 -0.01 -0.11 -0.007 0 0
GATE 5 -0.104 0.135 0.052 0.186 0.03 0.15 -0.017 44 31
IATE N -0.105 0.505 - 0.776 - - - 18 11

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'’500 / 10°000 obs.
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Table C.12: Quadratic IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.261 0.261 0.066 0.269 -0.03 0.06 -0.001 2 0
GATE 5 0.261 0.280 0.091 0.316 0.03 0.09 0.002 27 19
IATE N 0.261 0.601 - 0.743 - - - 20 12
IATE eff N 0.264 0.600 - 0.739 - - - - -
ATE 1 mcf -0.182 0.182 0.057 0.191 -0.02 -0.06 0.007 16 4
GATE 5 cent -0.182 0.187 0.078 0.231 0.03 0.03  0.008 52 33
IATE N -0.182 0.442 - 0.717 - - - 46 29
IATE eff N -0.180 0.437 - 0.712 - - - - -
ATE 1 grf 0.028 0.046 0.049 0.056 -0.10 -0.08 -0.008 85 62
GATE 5 0.029 0.120 0.094 0.146 -0.06 0.01 -0.003 76 54
IATE N -0.020 0.479 - 0.697 - - - 25 16
ATE 1 grf -0.208 0.208 0.046 0.213 0.02 -0.04 -0.006 0 0
GATE 5 cent -0.208 0.212 0.090 0.253 0.02 0.14 -0.001 46 28
IATE N -0.235 0.435 - 0.732 - - - 44 27
ATE 1 dm/  -0.037 0.056 0.059 0.069 -0.02 -0.09 -0.003 87 69
GATE 5 -0.037 0.154 0.123 0.194 -0.10 0.48 -0.010 73 55
IATE N ols -0.037 0.550 - 0.798 - - - 14 9
IATE N rf -0.058 0.513 - 0.759 - - - - -
ATE 1 dml- -0.048 0.061 0.057 0.074 0.01 -0.07 0.000 86 66
GATE 5 norm -0.048 0.156 0.121 0.197 -0.08 0.04 -0.003 75 57
IATE N ols -0.047 0.550 - 0.803 - - - 16 10
IATE N rf -0.070 0.515 - 0.750 - - - - -
ATE 1 ols -0.369 0.369 0.057 0.373 -0.01 0.03 -0.018 0 0
GATE 5 -0.369 0.392 0.108 0.521 -0.07 -0.02 -0.034 33 24
IATE N -0.369 0.675 - 1.091 - - - 38 24

Note:  Table to be continued.
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Table C.12 - continued: Quadratic IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0198 0.198 0.032 0.201 -0.04 0.57 0.001 0 0
GATE 5 0.198 0.231 0.052 0.256 0.09 0.09 -0.001 15 8
IATE N 0.198 0.552 - 0.702 - - - 15 9
IATE eff N 0.198 0.551 - 0.700 - - - - -
ATE 1 mcf -0.254 0.254 0.029 0.255 0.34 0.51 0.004 0 0
GATE 5 cent -0.254 0.254 0.044 0.280 0.11 0.13  0.003 3 1
IATE N -0.254 0.420 - 0.721 - - - 40 25
IATE eff N -0.254 0.418 - 0.719 - - - - -
ATE 1 grf -0.065 0.065 0.025 0.069 -0.21 -0.02 -0.004 16 6
GATE 5 -0.065 0.094 0.049 0.129 -0.03 -0.02 -0.002 66 49
IATE N -0.124  0.448 - 0.703 - - - 30 18
ATE 1 grf -0.264 0.264 0.026 0.265 -0.04 -0.21 -0.006 0 0
GATE 5 cent -0.264 0.264 0.049 0.287 -0.05 0.06 -0.003 2 0
IATE N -0.299 0.433 - 0.754 - - - 49 31
ATE 1 dm/  -0.069 0.071 0.036 0.078 0.58 1.44 -0.004 38 19
GATE 5 -0.069 0.123 0.079 0.167 0.73 5.73 -0.014 65 49
IATE N ols -0.069 0.507 - 0.761 - - - 5 3
IATE N rf -0.083 0.446 - 0.772 - - - - -
ATE 1 dml- -0.078 0.079 0.033 0.085 0.20 0.18 -0.001 31 14
GATE 5 norm -0.078 0.124 0.074 0.169 0.07 0.28 -0.007 67 50
IATE N ols -0.078 0.505 - 0.762 - - - 5 3
IATE N rf -0.094 0.448 - 0.702 - - - - -
ATE 1 ols -0.366 0.366 0.030 0.368 0.14 0.02 -0.011 0 0
GATE 5 -0.367 0.375 0.055 0.510 0.06 -0.08 -0.019 25 17
IATE N -0.367 0.656 - 1.078 - - - 17 11

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2'500 / 10°000
observations.
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Table C.13: Step-function IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf -0.003 0.048 0.061 0.061 0.005 0.00 -0.10 97 83
GATE 5 -0.004 0.092 0.087 0.115 0.000 ©0.01 0.02 86 67
IATE N -0.004 0.158 - 0.193 - - - 83 62
IATE eff N -0.002 0.147 - 0.178 - - - - -
ATE 1 mcf 0.003 0.048 0.061 0.061 0.03 0.06 -0.001 94 78
GATE 5 cent 0.002 0.090 0.091 0.114 0.02 0.09 -0.010 83 64
IATE N 0.002 0.162 - 0.199 - - - 77 56
IATE eff N 0.004 0.151 - 0.184 - - - - -
ATE 1 grf -0.001 0.035 0.043 0.043 -0.13 -0.04 -0.000 95 80
GATE 5 -0.001 0.076 0.096 0.096 0.06 0.09 -0.001 95 80
IATE N -0.001 0.158 - 0.190 - - - 76 55
ATE 1 grf 0.003 0.033 0.042 0.042 0.07 -0.02 0.000 95 80
GATE 5 cent 0.004 0.075 0.094 0.094 0.01 0.01  0.000 95 80
IATE N 0.004 0.155 - 0.187 - - - 77 57
ATE 1 dm/  -0.002 0.034 0.043 0.043 0.04 -0.12  0.005 97 85
GATE 5 -0.002 0.075 0.094 0.095 -0.02 0.04  0.002 95 81
IATE N ols -0.002 0.230 - 0.287 - - - 24 16
IATE N rf -0.002 0.273 - 0.345 - - - - -
ATE 1 dml- -0.002 0.034 0.043 0.043 0.04 -0.11  0.005 97 84
GATE 5 norm -0.002 0.075 0.094 0.094 -0.02 0.05 0.002 95 80
IATE N ols -0.002 0.229 - 0.286 - - - 23 15
IATE N rf -0.002 0.270 - 0.342 - - - - -
ATE 1 ols -0.001 0.034 0.042 0.042 0.04 -0.11 -0.013 82 61
GATE 5 -0.002 0.073 0.092 0.093 -0.04 0.09 -0.027 84 64
IATE N -0.001 0.228 - 0.284 - - - 68 48

Note:  Table to be continued.
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Table C.13 - continued: Step-function IATE, no selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.001 0.022 0.028 0.028 0.13 -0.15 0.005 98 84
GATE 5 0.001 0.049 0.045 0.063 0.07 -0.21  0.002 87 66
IATE N 0.001 0.097 - 0.121 - - - 86 68
IATE eff N 0.000 0.089 - 0.111 - - - - -
ATE 1 mcf 0.004 0.022 0.028 0.028 0.028 0.15 0.002 97 81
GATE 5 cent 0.004 0.045 0.045 0.058 0.045 0.17 -0.002 87 68
IATE N 0.004 0.096 - 0.121 - - - 83 63
IATE eff N 0.003 0.088 - 0.110 - - - - -
ATE 1 grf -0.000 0.016 0.020 0.020 -0.17 0.39 0.001 96 83
GATE 5 -0.001 0.037 0.047 0.047 -0.09 0.13 -0.001 94 80
IATE N -0.001 0.083 - 0.105 - - - 91 76
ATE 1 grf 0.002 0.017 0.021 0.021 0.01 0.02  0.000 96 79
GATE 5 cent 0.002 0.036 0.046 0.046 -0.07 -0.05 0.001 95 80
IATE N 0.002 0.082 - 0.103 - - - 91 76
ATE 1 dml 0.000 0.016 0.020 0.020 -0.13 0.25 0.003 97 86
GATE 5 -0.001 0.037 0.046 0.046 0.06 -0.02 0.001 95 82
IATE N ols -0.001 0.179 - 0.219 - - - 7 5
IATE N rf 0.000 0.202 - 0.257 - - - - -
ATE 1 dml- 0.000 0.016 0.020 0.020 -0.14 0.25 0.003 98 85
GATE 5 norm -0.001 0.037 0.046 0.046 0.05 -0.03 0.001 95 82
IATE N ols -0.001 0.179 - 0.219 - - - 7 4
IATE N rf 0.000 0.201 - 0.256 - - - - -
ATE 1 ols 0.000 0.016 0.020 0.020 -0.09 -0.02 -0.005 84 66
GATE 5 -0.001 0.037 0.046 0.046 0.01 -0.03 -0.013 85 62
IATE N -0.001 0.179 - 0.219 - - - 45 30

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.14: Step-function IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0175 0.175 0.062 0.186 0.11 0.13  0.002 21 7
GATE 5 0.175 0.178 0.090 0.211 0.06 -0.04 0.008 53 32
IATE N 0.175 0.214 - 0.268 - - - 67 50
IATE eff N 0.178 0.205 - 0.258 - - - - -
ATE 1 mcf 0.037 0.057 0.061 0.072 0.09 0.26  0.000 91 72
GATE 5 cent 0.037 0.094 0.090 0.121 0.05 0.07 -0.006 84 65
IATE N 0.037 0.174 - 0.212 - - - 75 53
IATE eff N 0.040 0.163 - 0.197 - - - - -
ATE 1 grf 0.097 0.097 0.044 0.107 -0.03 -0.24 -0.002 38 17
GATE 5 0.097 0.113 0.096 0.137 0.03 -0.00 -0.003 81 57
IATE N 0.092 0.188 - 0.231 - - - 70 50
ATE 1 grf 0.037 0.046 0.042 0.056 -0.00 -0.20 -0.000 85 64
GATE 5 cent 0.037 0.081 0.093 0.102 -0.01 0.07 -0.000 93 76
IATE N 0.034 0.175 - 0.210 - - - 72 51
ATE 1 dml 0.019 0.040 0.045 0.045 -0.03 -0.24 0.004 96 79
GATE 5 0.019 0.081 0.099 0.101 -0.04 -0.05 0.001 95 80
IATE N ols 0.019 0.237 - 0.296 - - - 25 16
IATE N rf 0.012 0.285 - 0.364 - - - - -
ATE 1 dml- 0.020 0.040 0.045 0.050 -0.04 -0.27 0.004 95 78
GATE 5 norm 0.020 0.081 0.081 0.101 -0.04 -0.05 0.001 95 79
IATE N ols 0.020 0.236 - 0.295 - - - 24 16
IATE N rf 0.013 0.284 - 0.362 - - - - -
ATE 1 ols 0.007 0.037 0.044 0.045 -0.07 -0.20 -0.013 83 63
GATE 5 0.007 0.080 0.094 0.100 -0.06 0.01 -0.027 81 61
IATE N 0.007 0.231 - 0.287 - - - 67 47

Note:  Table to be continued.
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Table C.14 - continued: Step-function IATE, medium selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.144 0.144 0.029 0.147 0.16 -0.02 0.003 0 0
GATE 5 0.144 0.144 0.048 0.158 0.16 -0.03 -0.001 21 7
IATE N 0.144 0.158 - 0.193 - - - 45 63
IATE eff N 0.144 0.153 - 0.186 - - - - -
ATE 1 mcf 0.014 0.025 0.027 0.030 0.21 0.24  0.003 96 82
GATE 5 cent 0.013 0.049 0.045 0.063 0.22 0.17 0.004 86 69
IATE N 0.013 0.106 - 0.131 - - - 81 59
IATE eff N 0.013 0.100 - 0.122 - - - - -
ATE 1 grf 0.064 0.064 0.020 0.067 -0.18 -0.41 0.001 13 4
GATE 5 0.064 0.068 0.047 0.080 -0.03 -0.15 -0.001 71 46
IATE N 0.063 0.096 - 0.126 - - - 86 71
ATE 1 grf 0.015 0.022 0.022 0.027 -0.08 0.05 -0.001 87 69
GATE 5 cent 0.016 0.041 0.048 0.051 -0.04 -0.03 -0.001 92 75
IATE N 0.016 0.089 - 0.111 - - - 89 73
ATE 1 dml 0.010 0.019 0.022 0.024 -0.16 0.94 0.003 94 82
GATE 5 0.010 0.041 0.050 0.051 0.14 0.04  0.000 94 80
IATE N ols 0.010 0.181 - 0.222 - - - 8 5
IATE N rf 0.005 0.214 - 0.275 - - - - -
ATE 1 dml/- 0.010 0.019 0.022 0.024 -0.17 0.97 0.003 94 82
GATE 5 norm 0.010 0.041 0.050 0.051 0.13 0.04  0.000 94 80
IATE N ols 0.010 0.181 - 0.222 - - - 8 5
IATE N rf 0.005 0.214 - 0.274 - - - - -
ATE 1 ols 0.008 0.017 0.021 0.022 0.08 0.21  -0.005 81 65
GATE 5 0.007 0.046 0.047 0.058 0.09 0.22 -0.014 74 53
IATE N 0.007 0.182 - 0.222 - - - 44 30

Note:  For GATE and IATE the results are averaged over all effects. CovP (95, 80) denotes the (average) probability that
the true value is part of the 95%/80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.15: Step-function IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf  0.437 0437 -0.001 0.441 0.03 -0.02 -0.001 0 0
GATE 5 0.436 0.436 0.001 0.455 0.00 0.06 0.001 1 0
IATE N 0.436 0.438 - 0.494 - - - 32 16
IATE eff N 0.439 0.439 - 0.489 - - - - -
ATE 1 mcf 0.046 0.060 0.058 0.074 0.01 0.05 0.008 92 72
GATE 5 cent 0.046 0.112 0.085 0.146 -0.03 0.11  0.009 81 62
IATE N 0.046 0.212 - 0.252 - - - 68 45
IATE eff N 0.048 0.205 - 0.240 - - - - -
ATE 1 grf 0.284 0.284 0.051 0.288 -0.06 -0.06 -0.010 0 0
GATE 5 0.284 0.284 0.101 0.309 -0.06 0.06 -0.011 19 8
IATE N 0.272 0.315 - 0.394 - - - 49 37
ATE 1 grf 0.090 0.091 0.046 0.101 0.04 -0.04 -0.006 41 20
GATE 5 cent 0.090 0.119 0.096 0.148 0.00 0.09 -0.007 75 56
IATE N 0.092 0.254 - 0.297 - - - 55 33
ATE 1 dml 0.147 0.148 0.059 0.159 -0.30 142 -0.003 27 11
GATE 5 0.147 0.165 0.127 0.195 -0.61 4.66 -0.014 66 46
IATE N ols 0.148 0.287 - 0.362 - - - 25 17
IATE N rf 0.125 0.344 - 0.533 - - - - -
ATE 1 dml- 0.140 0.140 0.056 0.150 0.00 -0.07 0.002 23 13
GATE 5 norm 0.140 0.157 0.123 0.187 -0.13 0.01 -0.005 74 52
IATE N ols 0.140 0.285 - 0.357 - - - 28 18
IATE N rf 0.117 0.349 - 0.461 - - - - -
ATE 1 ols 0.111 0.112 0.054 0.123 -0.02 0.01 -0.015 25 13
GATE 5 0.111 0.133 0.103 0.160 -0.04 0.03 -0.029 58 39
IATE N 0.111 0.990 - 0.314 - - - 65 47

Note:  Table to be continued.
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Table C.15 - continued: Step-function IATE, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0375 0.375 0.031 0.377 -0.06 0.70  0.001 0 0
GATE 5 0.375 0.375 0.053 0.384 -0.10 -0.10 -0.002 0 0
IATE N 0.375 0.375 - 0.409 - - - 18 6
IATE eff N 0.375 0.375 - 0.407 - - - - -
ATE 1 mcf -0.013 0.025 0.028 0.031 0.18 0.26  0.007 96 86
GATE 5 cent -0.014 0.085 0.045 0.100 0.01 0.03  0.007 65 41
IATE N -0.014 0.156 - 0.185 - - - 66 43
IATE eff N -0.014 0.151 - 0.151 - - - - -
ATE 1 grf 0.211 0.211 0.025 0.213 -0.31 -0.09 -0.004 0 0
GATE 5 0.211 0.211 0.052 0.220 0.00 -0.04 -0.005 3 0
IATE N 0.205 0.208 - 0.253 - - - 59 39
ATE 1 grf 0.042 0.044 0.027 0.050 -0.00 -0.18 -0.006 46 27
GATE 5 cent 0.043 0.063 0.051 0.080 -0.09 0.03  -0.006 75 56
IATE N 0.053 0.123 - 0.162 - - - 82 66
ATE 1 dml 0.088 0.088 0.035 0.095 0.45 2.84 -0.004 22 8
GATE 5 0.088 0.099 0.091 0.119 0.10 6.78 -0.015 62 42
IATE N ols 0.088 0.208 - 0.262 - - - 11 7
IATE N rf 0.069 0.268 - 0.479 - - - - -
ATE 1 dml- 0.079 0.079 0.032 0.085 0.12 0.21  0.000 28 12
GATE 5 norm 0.078 0.090 0.073 0.108 -0.08 0.04 -0.007 71 49
IATE N ols 0.079 0.205 - 0.256 - - - 12 8
IATE N rf 0.058 0.275 - 0.418 - - - - -
ATE 1 ols 0.113 0.113 0.027 0.116 0.07 -0.30 -0.008 0 0
GATE 5 0.113 0.118 0.052 0.134 0.05 -0.07 -0.015 27 17
IATE N 0.113 0.200 0.253 - - 46 31

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.

C.2 Extensions to the base specifications

So far, we investigate the performance of the estimations when we vary the IATE and the
degree of selectivity, as these dimensions are key parameters in any unconfoundedness setting.
However, there are many other dimensions for which it is interesting to see if the conclusions
concerning estimator behaviour change. Since it is infeasible to vary all of them simultaneously,
we chose the setting with medium selectivity, the step function specification of IATE hetero-
geneity, as well as the other parameters from the previous specification (&=10, p=20, R°(y’) =
10%, XV and XV, 2 treatment groups, a treatment share of 50%, 5 GATEs, N=2"500 and

N=10’000). Then, we vary these parameters only individually, instead of varying them jointly.
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Therefore, the following tables will only show the dimension that deviates from this baseline

specification.

Table C.16: Fewer covariates (p =10, k=p / 2)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0134 0.135 0.060 0.147 -0.09 -0.04 0.005 44 21
GATE 5 0.133 0.144 0.091 0.177 -0.01 0.09 0.005 70 50
IATE N 0.134 0.196 - 0.246 - - - 80 62
IATE eff N 0.136 0.181 - 0.228 - - - - -
ATE 1 mcf 0.006 0.049 0.060 0.061 -0.09 0.01 0.002 96 83
GATE 5 cent 0.005 0.088 0.093 0.112 -0.02 -0.01 0.002 90 73
IATE N 0.005 0.171 - 0.211 - - - 86 65
IATE eff N 0.005 0.154 - 0.188 - - - - -
ATE 1 grf 0.043 0.050 0.044 0.061 0.05 -0.02 -0.001 82 60
GATE 5 0.043 0.085 0.097 0.107 -0.05 -0.01 -0.003 92 73
IATE N 0.040 0.158 - 0.194 - - - 78 58
ATE 1 grf 0.011 0.036 0.045 0.046 0.16 0.04 -0.002 93 76
GATE 5 cent 0.012 0.079 0.098 0.099 0.03 0.12 -0.003 94 78
IATE N 0.013 0.157 - 0.190 - - - 78 58
ATE 1 dml 0.000 0.039 0.049 0.049 -0.08 0.14 0.001 97 83
GATE 5 0.000 0.084 0.105 0.105 0.00 -0.02 0.003 95 81
IATE N ols 0.000 0.214 - 0.266 - - - 19 12
IATE N rf -0.002 0.336 - 0.433 - - - - -
ATE 1 dml- 0.002 0.039 0.049 0.049 -0.08 0.13  0.002 96 81
GATE 5 norm 0.002 0.083 0.103 0.104 -0.01 -0.04 0.000 95 80
IATE N ols 0.002 0.212 - 0.264 - - - 17 11
IATE N rf 0.000 0.329 - 0.423 - - - - -
ATE 1 ols 0.009 0.037 0.046 0.047 -0.02 0.06 -0.015 81 63
GATE 5 0.008 0.086 0.096 0.107 0.01 0.14 -0.029 79 57
IATE N 0.008 0.207 - 0.257 - - - 60 41

Note:  Table to be continued.

118



Table C.16 - continued: Fewer covariates (p = 10, k=p / 2)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.092 0.092 0.030 0.097 0.09 -0.35 0.002 18 5
GATE 5 0.091 0.094 0.051 0.113 0.12 0.07 0.003 62 40
IATE N 0.091 0.132 - 0.166 - - - 83 66
IATE eff N 0.093 0.120 - 0.152 - - - - -
ATE 1 mcf -0.009 0.026 0.030 0.032 0.10 -0.29 0.001 95 80
GATE 5 cent -0.010 0.049 0.049 0.061 0.13 0.10 0.003 92 72
IATE N -0.009 0.113 - 0.140 - - - 90 71
IATE eff N -0.008 0.098 - 0.121 - - - - -
ATE 1 grf 0.020 0.023 0.021 0.029 -0.13 -0.04 0.000 82 62
GATE 5 0.019 0.042 0.049 0.053 0.08 0.03  -0.002 92 76
IATE N 0.020 0.086 - 0.111 - - - 90 75
ATE 1 grf 0.003 0.017 0.022 0.022 0.13 0.58 -0.001 93 78
GATE 5 cent 0.003 0.040 0.049 0.050 0.02 0.12 -0.002 95 80
IATE N 0.007 0.086 - 0.109 - - - 90 75
ATE 1 dm/  -0.003 0.019 0.023 0.023 0.00 -0.45 0.003 98 82
GATE 5 -0.003 0.041 0.051 0.051 0.10 0.04 0.001 96 81
IATE N ols -0.003 0.176 - 0.214 - - - 5 3
IATE N rf -0.003 0.214 - 0.340 - - - - -
ATE 1 dml/- -0.003 0.019 0.023 0.023 0.00 -0.45 0.001 98 82
GATE 5 norm -0.003 0.041 0.051 0.051 0.01 0.04  0.000 95 80
IATE N ols -0.003 0.176 - 0.214 - - - 5 3
IATE N rf -0.003 0.263 - 0.334 - - - - -
ATE 1 ols 0.004 0.017 0.021 0.021 -0.01 -0.23 -0.006 82 65
GATE 5 0.003 0.053 0.048 0.065 0.09 0.13 -0.014 67 50
IATE N 0.003 0.178 0.215 - - 35 23

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.

119



Table C.17: More covariates (p = 50, k=p / 2)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.223 0.223 0.061 0.231 -0.02 0.05 0.002 5 1
GATE 5 0.223 0.224 0.085 0.253 -0.04 0.22 -0.001 33 14
IATE N 0.223 0.244 - 0.304 - - - 53 40
IATE eff N 0.223 0.238 - 0.297 - - - - -
ATE 1 mcf 0.124 0.125 0.060 0.138 0.02 -0.03 0.001 48 22
GATE 5 cent 0.124 0.136 0.085 0.174 -0.01 0.22 -0.006 66 46
IATE N 0.124 0.196 - 0.247 - - - 60 43
IATE eff N 0.125 0.189 - 0.239 - - - - -
ATE 1 grf 0.178 0.178 0.043 0.183 -0.01 0.06  0.000 2 0
GATE 5 0.178 0.180 0.095 0.202 -0.08 0.10 0.000 53 27
IATE N 0.172 0.252 - 0.308 - - - 52 35
ATE 1 grf 0.107 0.107 0.042 0.115 0.01 -0.03 0.001 29 11
GATE 5 cent 0.107 0.119 0.093 0.142 0.03 -0.06  0.000 79 55
IATE N 0.102 0.231 - 0.271 - - - 53 32
ATE 1 dml 0.092 0.093 0.045 0.103 -0.04 -0.07 0.003 52 25
GATE 5 0.093 0.111 0.098 0.135 -0.03 0.09 -0.003 83 61
IATE N ols 0.093 0.308 - 0.386 - - - 38 26
IATE N rf 0.084 0.250 - 0.314 - - - - -
ATE 1 dml- 0.092 0.092 0.046 0.102 -0.06 -0.06 0.003 53 25
GATE 5 norm 0.092 0.111 0.099 0.135 -0.02 0.09 -0.002 84 62
IATE N ols 0.092 0.310 - 0.389 - - - 39 26
IATE N rf 0.083 0.251 - 0.316 - - - - -
ATE 1 ols 0.012 0.039 0.048 0.049 -0.09 -0.02 -0.016 77 58
GATE 5 0.012 0.080 0.099 0.101 0.00 0.09 -0.032 81 62
IATE N 0.012 0.295 - 0.369 - - - 75 55

Note:  Table to be continued.
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Table C.17 - continued: More covariates (p = 50, k=p /2)

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.201 0.201 0.031 0.204 0.01 -0.07 0.001 0 0
GATE 5 0.202 0.202 0.047 0.213 0.05 -0.08 -0.002 1 0
IATE N 0.202  0.205 - 0.240 - - - 38 23
IATE eff N 0.202 0.204 - 0.235 - - - - -
ATE 1 mcf 0.093 0.093 0.029 0.097 0.14 0.12 0.001 11 3
GATE 5 cent 0.093 0.094 0.045 0.116 0.11 -0.03 -0.003 50 31
IATE N 0.093 0.130 - 0.164 - - - 59 43
IATE eff N 0.093 0.164 - 0.159 - - - - -
ATE 1 grf 0.144 0.144 0.020 0.145 -0.17 0.29 0.001 0 0
GATE 5 0.144 0.144 0.046 0.152 0.05 -0.09 0.001 13 3
IATE N 0.141 0.148 - 0.188 - - - 66 50
ATE 1 grf 0.073 0.073 0.020 0.076 -0.10 0.06 0.000 6 2
GATE 5 cent 0.072 0.074 0.045 0.085 0.07 -0.24 0.001 66 39
IATE N 0.068 0.111 - 0.142 - - - 80 63
ATE 1 dml 0.070 0.070 0.021 0.073 0.10 0.03 0.003 14 4
GATE 5 0.070 0.073 0.049 0.085 -0.03 0.00 -0.001 66 42
IATE N ols 0.070 0.208 - 0.259 - - - 14 9
IATE N rf 0.062 0.183 - 0.232 - - - - -
ATE 1 dml- 0.068 0.068 0.021 0.071 0.11 0.02 0.003 16 4
GATE 5 norm 0.069 0.072 0.049 0.084 -0.03 0.01 -0.001 69 44
IATE N ols 0.068 0.208 - 0.260 - - - 15 10
IATE N rf 0.055 0.185 - 0.234 - - - - -
ATE 1 ols 0.011 0.020 0.022 0.024 0.03 -0.19 -0.006 79 56
GATE 5 0.011 0.041 0.041 0.051 -0.02 0.09 -0.014 79 60
IATE N 0.011 0.200 - 0.248 - - - 59 41
Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the

true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.18: Sparser model (p = 20, k= 4)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0132 0.133 0.061 0.146 0.04 0.01 0.003 47 22
GATE 5 0.132 0.142 0.091 0.175 0.01 -0.07 0.001 69 49
IATE N 0.132 0.189 - 0.237 - - - 74 57
IATE eff N 0.135 0.189 - 0.237 - - - - -
ATE 1 mcf 0.011 0.050 0.063 0.063 0.07 0.08 0.000 95 79
GATE 5 cent 0.010 0.091 0.093 0.115 0.05 -0.02 -0.004 87 68
IATE N 0.010 0.172 - 0.209 - - - 77 55
IATE eff N 0.013 0.160 - 0.192 - - - - -
ATE 1 grf 0.043 0.051 0.044 0.062 -0.09 -0.03 -0.001 80 58
GATE 5 0.043 0.085 0.096 0.107 0.07 0.06 -0.003 91 74
IATE N 0.040 0.184 - 0.220 - - - 69 48
ATE 1 grf 0.022 0.040 0.044 0.049 0.03 0.04 -0.002 91 73
GATE 5 cent 0.022 0.079 0.095 0.099 0.00 -0.01 -0.001 94 77
IATE N 0.021 0.180 - 0.214 - - - 70 49
ATE 1 dml 0.000 0.036 0.045 0.045 -0.01 -0.14 0.005 97 85
GATE 5 0.000 0.082 0.102 0.102 -0.10 -0.04 0.001 95 80
IATE N ols 0.000 0.240 - 0.299 - - - 28 17
IATE N rf -0.004 0.292 - 0.375 - - - - -
ATE 1 dml- 0.002 0.036 0.045 0.045 -0.01 -0.14 0.004 97 84
GATE 5 norm 0.002 0.081 0.101 0.102 -0.10 -0.02 0.000 95 80
IATE N ols 0.002 0.238 - 0.297 - - - 25 16
IATE N rf -0.003 0.288 - 0.370 - - - - -
ATE 1 ols 0.002 0.030 0.044 0.044 -0.06 -0.14 -0.012 84 63
GATE 5 0.002 0.086 0.096 0.107 -0.03 -0.01 -0.028 78 58
IATE N 0.002 0.232 - 0.289 - - - 67 47

Note:  Table to be continued.
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Table C.18 - continued: Sparser model (p = 20, k= 4)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.097 0.097 0.029 0.102 0.16 -0.31  0.003 14 2
GATE 5 0.097 0.099 0.050 0.119 0.08 -0.27 0.001 56 36
IATE N 0.097 0.127 - 0.161 - - - 75 57
IATE eff N 0.097 0.119 - 0.151 - - - - -
ATE 1 mcf -0.002 0.023 0.029 0.029 0.07 -0.19 0.003 98 84
GATE 5 cent -0.002 0.049 0.049 0.062 0.12 -0.13  0.002 89 71
IATE N -0.003 0.106 - 0.131 - - - 83 61
IATE eff N -0.002 0.098 - 0.119 - - - - -
ATE 1 grf 0.022 0.026 0.021 0.031 -0.15 -0.25 -0.000 81 57
GATE 5 0.022 0.043 0.049 0.054 0.05 -0.07 -0.002 92 73
IATE N 0.023 0.091 - 0.118 - - - 87 72
ATE 1 grf 0.007 0.019 0.023 0.024 0.19 0.07 -0.002 91 74
GATE 5 cent 0.008 0.040 0.048 0.050 0.01 -0.05 -0.001 93 77
IATE N 0.010 0.091 - 0.114 - - - 88 71
ATE 1 dml 0.001 0.017 0.022 0.022 -0.14 0.63  0.003 96 86
GATE 5 0.000 0.040 0.050 0.051 0.09 0.06 0.001 95 80
IATE N ols 0.000 0.182 - 0.223 - - - 8 5
IATE N rf -0.002 0.218 - 0.282 - - - - -
ATE 1 dml/- 0.001 0.017 0.022 0.022 -0.15 0.62  0.003 96 87
GATE 5 norm 0.001 0.040 0.050 0.050 0.09 0.06  0.000 95 79
IATE N ols 0.001 0.182 - 0.223 - - - 8 5
IATE N rf -0.002 0.216 - 0.279 - - - - -
ATE 1 ols 0.004 0.017 0.021 0.022 -0.09 0.30 -0.006 84 66
GATE 5 0.004 0.056 0.052 0.068 -0.01 0.08 -0.014 64 44
IATE N 0.004 0.184 0.225 - - 44 29

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.19: Less sparse model (p = 20, k= 16)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0192 0.192 0.061 0.201 0.08 0.23  0.002 14 4
GATE 5 0.191 0.193 0.089 0.224 0.07 0.17 -0.003 47 25
IATE N 0.191 0.225 - 0.279 - - - 64 48
IATE eff N 0.194 0.216 - 0.270 - - - - -
ATE 1 mcf 0.053 0.065 0.060 0.080 0.05 0.43 0.001 87 65
GATE 5 cent 0.052 0.096 0.088 0.126 0.05 0.29 -0.005 82 65
IATE N 0.052 0.174 - 0.214 - - - 75 53
IATE eff N 0.055 0.164 - 0.200 - - - - -
ATE 1 grf 0.125 0.125 0.044 0.133 -0.01 -0.09 -0.002 17 5
GATE 5 0.125 0.134 0.097 0.159 0.00 -0.03 -0.003 72 48
IATE N 0.119 0.193 - 0.240 - - - 70 51
ATE 1 grf 0.048 0.054 0.042 0.064 0.04 -0.18 -0.000 79 55
GATE 5 cent 0.047 0.085 0.093 0.106 -0.01 0.09 -0.001 92 74
IATE N 0.044 0.174 - 0.209 - - - 73 52
ATE 1 dml 0.032 0.044 0.044 0.055 -0.02 -0.15 0.005 93 73
GATE 5 0.032 0.083 0.098 0.103 -0.02 -0.05 0.000 93 79
IATE N ols 0.032 0.236 - 0.295 - - - 24 16
IATE N rf 0.024 0.282 - 0.359 - - - - -
ATE 1 dml- 0.032 0.044 0.044 0.055 -0.02 -0.17 0.004 92 73
GATE 5 norm 0.032 0.083 0.099 0.104 -0.01 -0.06 0.000 93 78
IATE N ols 0.032 0.236 - 0.295 - - - 24 16
IATE N rf 0.024 0.283 - 0.359 - - - - -
ATE 1 ols 0.008 0.036 0.044 0.045 -0.07 -0.19 -0.013 84 61
GATE 5 0.008 0.078 0.094 0.097 -0.05 0.03 -0.027 82 62
IATE N 0.008 0.230 - 0.286 - - - 67 48

Note:  Table to be continued.
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Table C.19 - continued: Less sparse model (p = 20, k= 16)

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.168 0.168 0.029 0.170 0.06 0.07 0.003 0 0
GATE 5 0.167 0.167 0.047 0.179 0.15 0.04 -0.001 7 2
IATE N 0.167 0.176 - 0.210 - - - 57 39
IATE eff N 0.167 0.172 - 0.203 - - - - -
ATE 1 mcf 0.029 0.032 0.026 0.039 -0.05 0.10 0.004 90 65
GATE 5 cent 0.028 0.051 0.044 0.069 0.15 0.12 0.001 84 67
IATE N 0.028 0.107 - 0.133 - - - 80 59
IATE eff N 0.028 0.100 - 0.124 - - - - -
ATE 1 grf 0.093 0.093 0.020 0.095 -0.15 -0.44 0.001 0 0
GATE 5 0.092 0.093 0.047 0.104 0.04 -0.11  -0.001 49 25
IATE N 0.089 0.109 - 0.141 - - - 82 66
ATE 1 grf 0.024 0.027 0.021 0.032 -0.05 0.06 0.000 80 51
GATE 5 cent 0.025 0.043 0.046 0.054 -0.04 -0.07 -0.000 90 72
IATE N 0.024 0.089 - 0.112 - - - 89 73
ATE 1 dml 0.020 0.025 0.22 0.030 -0.31 1.16 0.002 89 68
GATE 5 0.020 0.042 0.49 0.053 0.07 -0.03 0.000 93 77
IATE N ols 0.020 0.181 - 0.222 - - - 7 5
IATE N rf 0.014 0.212 - 0.271 - - - - -
ATE 1 dml- 0.020 0.025 0.22 0.030 -0.33 1.20 0.002 89 70
GATE 5 norm 0.020 0.042 0.49 0.053 0.07 -0.03 0.000 93 77
IATE N ols 0.020 0.181 - 0.222 - - - 7 5
IATE N rf 0.014 0.212 - 0.272 - - - - -
ATE 1 ols 0.009 0.018 0.021 0.023 -0.11 0.33  -0.006 79 64
GATE 5 0.009 0.043 0.047 0.053 0.05 0.07 -0.014 77 57
IATE N 0.009 0.181 - 0.221 - - - 45 30
Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the

true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.20: Covariates irrelevant for Y° (R2(y?) = 0%)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.024 0.050 0.059 0.064 0.10 0.07 0.00 93 76
GATE 5 0.023 0.089 0.087 0.115 0.05 0.04 -0.003 86 68
IATE N 0.023 0.168 - 0.206 - - - 79 58
IATE eff N 0.026  0.157 - 0.192 - - - - -
ATE 1 mcf -0.034 0.056 0.060 0.069 0.059 0.184 0.000 92 73
GATE 5 cent -0.034 0.098 0.089 0.120 0.044 0.124 -0.005 81 61
IATE N -0.034 0.176 - 0.213 - - - 75 53
IATE eff N -0.031 0.165 - 0.197 - - - - -
ATE 1 grf 0.013 0.036 0.043 0.045 -0.02 -0.27 -0.002 93 73
GATE 5 0.013 0.077 0.094 0.096 0.06 0.03  -0.003 93 78
IATE N 0.009 0.161 - 0.197 - - - 75 56
ATE 1 grf -0.011 0.035 0.042 0.044 0.03 -0.22 -0.001 94 78
GATE 5 cent -0.010 0.075 0.093 0.094 -0.01 0.06 -0.001 94 78
IATE N -0.012 0.164 - 0.198 - - - 74 55
ATE 1 dm/  -0.002 0.037 0.045 0.045 -0.04 -0.23 0.004 97 83
GATE 5 -0.002 0.078 0.098 0.098 -0.04 -0.06 0.000 95 80
IATE N ols -0.001 0.247 - 0.307 - - - 22 15
IATE N rf -0.002 0.283 - 0.362 - - - - -
ATE 1 dml- -0.001 0.037 0.045 0.045 -0.04 -0.26 0.003 97 83
GATE 5 norm -0.001 0.078 0.098 0.098 -0.04 -0.06 0.000 95 80
IATE N ols -0.001 0.246 - 0.307 - - - 22 15
IATE N rf -0.001 0.282 - 0.360 - - - - -
ATE 1 ols -0.002 0.036 0.044 0.044 -0.06 -0.22 -0.013 83 62
GATE 5 -0.002 0.076 0.093 0.094 -0.07 0.01 -0.027 84 63
IATE N -0.002 0.241 - 0.299 - - - 64 45

Note:  Table to be continued.
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Table C.20 - continued: Covariates irrelevant for YO (RZ(y%) = 0%)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.016 0.026 0.027 0.032 0.27 0.04  0.003 94 79
GATE 5 0.015 0.046 0.044 0.061 0.25 0.20 0.002 89 72
IATE N 0.015 0.101 - 0.128 - - - 84 72
IATE eff N 0.015 0.093 - 0.117 - - - - -
ATE 1 mcf -0.035 0.038 0.03 0.044 0.24 0.24  0.004 81 57
GATE 5 cent -0.036 0.062 0.04 0.073 0.21 0.19 0.002 76 50
IATE N -0.036 0.111 - 0.137 - - - 79 57
IATE eff N -0.036 0.104 - 0.127 - - - - -
ATE 1 grf 0.006 0.017 0.020 0.021 -0.13 -0.35 0.001 95 77
GATE 5 0.006 0.038 0.047 0.047 -0.01 -0.04 -0.001 95 78
IATE N 0.005 0.089 - 0.114 - - - 89 73
ATE 1 grf -0.013 0.020 0.022 0.026 -0.16 0.31 -0.001 90 67
GATE 5 cent -0.013 0.040 0.047 0.050 -0.06 0.01 -0.001 92 77
IATE N -0.012 0.095 - 0.117 - - - 87 69
ATE 1 dm/  -0.001 0.016 0.022 0.022 -0.25 1.08 0.003 96 84
GATE 5 -0.001 0.039 0.049 0.050 0.09 0.01 -0.001 94 80
IATE N ols -0.001 0.197 - 0.241 - - - 7 4
IATE N rf -0.001 0.213 - 0.273 - - - - -
ATE 1 dml- -0.001 0.017 0.022 0.022 -0.28 1.13  0.002 96 85
GATE 5 norm -0.001 0.039 0.049 0.050 0.09 0.01 -0.001 95 80
IATE N ols -0.001 0.197 - 0.240 - - - 7 4
IATE N rf -0.001 0.212 - 0.273 - - - - -
ATE 1 ols -0.001 0.016 0.021 0.021 0.05 0.13  -0.006 84 66
GATE 5 -0.001 0.039 0.047 0.049 0.07 0.20 -0.014 82 62
IATE N -0.001 0.049 0.196 - - 40 27

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.21: Covariates very important for Y° (R2(y%) = 45%)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0421 0421 0.074 0.427 0.09 0.17 0.016 0 0
GATE 5 0.420 0.420 0.111 0.447 0.06 -0.07 0.007 9 2
IATE N 0.420 0.427 - 0.497 - - - 45 31
IATE eff N 0.422 0.427 - 0.488 - - - - -
ATE 1 mcf 0.165 0.165 0.068 0.178 0.13 0.31 0.002 33 12
GATE 5 cent 0.164 0.173 0.104 0.215 0.09 0.06  -0.007 63 42
IATE N 0.164 0.248 - 0.308 - - - 65 47
IATE eff N 0.164 0.237 - 0.295 - - - - -
ATE 1 grf 0.228 0.228 0.050 0.234 -0.02 -0.20 -0.000 1 0
GATE 5 0.228 0.230 0.110 0.254 -0.01 -0.03 -0.000 45 22
IATE N 0.218 0.253 - 0.323 - - - 69 50
ATE 1 grf 0.117 0.117 0.047 0.126 0.01 -0.06 -0.000 29 12
GATE 5 cent 0.117 0.131 0.102 0.158 0.02 0.02 -0.000 78 54
IATE N 0.109 0.193 - 0.246 - - - 77 58
ATE 1 dml 0.061 0.067 0.050 0.079 -0.04 -0.20 0.006 84 57
GATE 5 0.061 0.101 0.110 0.126 -0.02 0.00 0.004 92 74
IATE N ols 0.062 0.318 - 0.395 - - - 23 15
IATE N rf 0.041 0.340 - 0.434 - - - - -
ATE 1 dml- 0.064 0.068 0.050 0.081 -0.05 -0.20 0.005 82 54
GATE 5 norm 0.063 0.102 0.110 0.127 -0.03 0.00 0.003 92 74
IATE N ols 0.064 0.317 - 0.395 - - - 23 15
IATE N rf 0.044 0.339 - 0.432 - - - - -
ATE 1 ols 0.022 0.044 0.049 0.054 -0.09 -0.14 -0.015 78 56
GATE 5 0.022 0.105 0.103 0.129 -0.04 -0.02 -0.029 73 51
IATE N 0.022 0.314 - 0.388 - - - 56 38

Note:  Table to be continued.
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Table C.21 - continued: Covariates very important for Y (R2(y°) = 45%)

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.346 0.346 0.034 0.347 -0.09 -0.12  0.011 0 0
GATE 5 0.345 0.345 0.059 0.356 0.04 -0.12  0.004 0 0
IATE N 0.344 0.347 - 0.387 - - - 35 20
IATE eff N 0.345 0.346 - 0.381 - - - - -
ATE 1 mcf 0.104 0.104 0.029 0.108 0.08 -0.05 0.005 10 2
GATE 5 cent 0.103 0.105 0.050 0.126 0.17 0.01 0.001 53 32
IATE N 0.103 0.158 - 0.194 - - - 67 48
IATE eff N 0.103 0.153 - 0.187 - - - - -
ATE 1 grf 0.152 0.152 0.022 0.153 -0.20 -0.51  0.002 0 0
GATE 5 0.151 0.151 0.052 0.161 -0.05 -0.18 0.001 20 6
IATE N 0.147 0.162 - 0.200 - - - 72 53
ATE 1 grf 0.060 0.060 0.024 0.064 -0.00 -0.20 -0.001 29 9
GATE 5 cent 0.061 0.068 0.051 0.081 -0.04 -0.02 -0.001 74 50
IATE N 0.061 0.118 - 0.146 - - - 83 64
ATE 1 dml 0.036 0.037 0.023 0.043 -0.14 0.80 0.004 77 46
GATE 5 0.036 0.052 0.053 0.065 0.20 0.10 0.001 90 73
IATE N ols 0.036 0.267 - 0.325 - - - 6 4
IATE N rf 0.021 0.325 - 0.320 - - - - -
ATE 1 dml- 0.037 0.038 0.023 0.043 -0.14 0.81 0.004 77 44
GATE 5 norm 0.036 0.052 0.053 0.065 0.19 0.09 0.001 89 72
IATE N ols 0.036 0.267 - 0.325 - - - 6 4
IATE N rf 0.022 0.319 - 0.319 - - - - -
ATE 1 ols 0.023 0.027 0.022 0.032 0.21 0.34 -0.005 69 49
GATE 5 0.022 0.080 0.051 0.095 0.11 0.28 0.109 48 30
IATE N 0.022 0.273 - 0.332 - - - 32 21
Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the

true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.22: Uniformly distributed covariates (XV)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0179 0.179 0.058 0.188 0.115 -0.24 0.006 19 5
GATE 5 0.178 0.180 0.088 0.212 0.030 -0.12 0.000 53 31
IATE N 0.179 0.214 - 0.267 - - - 67 50
IATE eff N 0.180 0.205 - 0.256 - - - - -
ATE 1 mcf 0.038 0.046 0.056 0.068 0.12 -0.24  0.005 92 75
GATE 5 cent 0.038 0.092 0.087 0.118 -0.01 -0.10 -0.003 85 67
IATE N 0.039 0.171 - 0.209 - - - 76 55
IATE eff N 0.039 0.161 - 0.195 - - - - -
ATE 1 grf 0.095 0.095 0.042 0.103 0.03 -0.30 0.000 39 17
GATE 5 0.094 0.110 0.093 0.133 -0.02 0.09 0.000 83 59
IATE N 0.089 0.188 - 0.230 - - - 71 50
ATE 1 grf 0.034 0.044 0.043 0.055 0.02 0.22 -0.001 86 67
GATE 5 cent 0.035 0.081 0.094 0.102 -0.03 -0.01 -0.002 93 76
IATE N 0.032 0.174 - 0.209 - - - 72 51
ATE 1 dml 0.019 0.039 0.044 0.048 -0.07 -0.09 0.005 96 81
GATE 5 0.019 0.082 0.101 0.103 -0.01 -0.13 -0.001 94 78
IATE N ols 0.019 0.227 - 0.283 - - - 26 17
IATE N rf 0.012 0.285 - 0.363 - - - - -
ATE 1 dml- 0.020 0.040 0.044 0.049 -0.06 -0.12 0.005 96 80
GATE 5 norm 0.020 0.082 0.101 0.103 -0.01 -0.13 -0.001 94 78
IATE N ols 0.020 0.227 - 0.283 - - - 26 17
IATE N rf 0.013 0.284 - 0.362 - - - - -
ATE 1 ols 0.007 0.035 0.043 0.044 -0.03 -0.10 -0.012 83 64
GATE 5 0.007 0.082 0.096 0.102 -0.01 -0.13 -0.011 80 60
IATE N 0.008 0.220 - 0.273 - - - 70 50

Note:  Table to be continued.
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Table C.22 - continued: Uniformly distributed covariates (XV)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.145 0.145 0.028 0.148 0.01 -0.58 0.004 0 0
GATE 5 0.145 0.145 0.046 0.158 0.01 -0.31 0.001 22 5
IATE N 0.145 0.158 - 0.192 - - - 63 45
IATE eff N 0.144 0.152 - 0.184 - - - - -
ATE 1 mcf 0.014 0.025 0.028 0.031 0.02 -0.40 0.003 95 78
GATE 5 cent 0.013 0.048 0.044 0.063 0.00 -0.23  0.002 87 68
IATE N 0.013 0.107 - 0.131 - - - 81 59
IATE eff N 0.011 0.099 - 0.120 - - - - -
ATE 1 grf 0.062 0.062 0.022 0.066 0.02 -0.32 -0.001 18 6
GATE 5 0.062 0.065 0.046 0.077 0.00 -0.17 0.001 73 49
IATE N 0.060 0.095 - 0.124 - - - 87 72
ATE 1 grf 0.014 0.022 0.023 0.027 0.03 0.12 -0.002 88 66
GATE 5 cent 0.015 0.041 0.048 0.051 0.01 -0.06 -0.002 92 76
IATE N 0.015 0.090 - 0.113 - - - 88 72
ATE 1 dml 0.009 0.020 0.023 0.025 -0.02 -0.21 0.002 96 79
GATE 5 0.009 0.040 0.049 0.050 -0.01 -0.06 0.000 95 79
IATE N ols 0.009 0.168 - 0.205 - - - 8 5
IATE N rf 0.004 0.215 - 0.276 - - - - -
ATE 1 dml- 0.009 0.020 0.023 0.025 -0.03 -0.17 0.002 96 79
GATE 5 norm 0.009 0.040 0.049 0.050 -0.01 -0.05 0.000 94 79
IATE N ols 0.010 0.168 - 0.205 - - - 8 5
IATE N rf 0.004 0.214 - 0.275 - - - - -
ATE 1 ols 0.008 0.019 0.022 0.023 -0.06 0.08 -0.007 82 62
GATE 5 0.007 0.047 0.048 0.058 -0.03 -0.17 -0.015 73 52
IATE N 0.007 0.168 0.204 - - 47 31

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.23: Normally distributed covariates (XN)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0191 0.191 0.062 0.201 -0.06 0.14  0.002 15 4
GATE 5 0.191 0.194 0.089 0.226 -0.12 0.17 -0.001 49 26
IATE N 0.190 0.226 - 0.281 - - - 64 48
IATE eff N 0.191 0.226 - 0.270 - - - - -
ATE 1 mcf 0.044 0.061 0.060 0.075 -0.10 -0.01 0.001 89 69
GATE 5 cent 0.044 0.097 0.088 0.125 -0.12 0.08 -0.004 82 64
IATE N 0.044 0.176 - 0.214 - - - 75 53
IATE eff N 0.045 0.165 - 0.200 - - - - -
ATE 1 grf 0.107 0.108 0.044 0.116 -0.12 0.01 -0.001 27 11
GATE 5 0.107 0.121 0.096 0.145 -0.05 -0.08 -0.002 78 54
IATE N 0.102 0.193 - 0.238 - - - 70 50
ATE 1 grf 0.041 0.048 0.041 0.058 0.08 -0.03 0.000 84 62
GATE 5 cent 0.041 0.084 0.095 0.105 -0.03 -0.12 -0.002 92 74
IATE N 0.039 0.179 - 0.214 - - - 71 50
ATE 1 dml 0.026 0.042 0.046 0.053 -0.06 0.01 0.003 93 77
GATE 5 0.026 0.083 0.101 0.104 -0.03 -0.03 -0.001 94 78
IATE N ols 0.026  0.240 - 0.300 - - - 24 16
IATE N rf 0.017 0.286 - 0.365 - - - - -
ATE 1 dml- 0.027 0.043 0.046 0.053 -0.06 0.02  0.003 93 77
GATE 5 norm 0.027 0.083 0.101 0.104 -0.03 -0.03 -0.001 94 78
IATE N ols 0.027 0.239 - 0.299 - - - 24 16
IATE N rf 0.017 0.285 - 0.363 - - - - -
ATE 1 ols 0.012 0.038 0.046 0.047 -0.02 0.25 -0.014 81 61
GATE 5 0.011 0.083 0.097 0.103 -0.04 -0.04 -0.029 80 58
IATE N 0.011 0.233 - 0.291 - - - 66 47

Note:  Table to be continued.
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Table C.23 - continued: Normally distributed covariates (XV)

Estimation of effects

Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.156 0.156 0.030 0.159 -0.15 -0.03 0.002 0 0
GATE 5 0.156 0.156 0.049 0.170 -0.08 -0.16 -0.001 16 5
IATE N 0.155 0.168 - 0.205 - - - 60 43
IATE eff N 0.155 0.163 - 0.198 - - - - -
ATE 1 mcf 0.018 0.028 0.029 0.034 -0.08 -0.29 0.001 93 73
GATE 5 cent 0.018 0.051 0.046 0.067 0.03 -0.09 0.000 84 67
IATE N 0.018 0.110 - 0.136 - - - 80 67
IATE eff N 0.017 0.102 - 0.125 - - - - -
ATE 1 grf 0.073 0.073 0.021 0.076 -0.04 0.24  -0.000 8 1
GATE 5 0.073 0.076 0.047 0.088 0.04 0.07 -0.001 66 39
IATE N 0.071 0.103 - 0.133 - - - 84 68
ATE 1 grf 0.019 0.026 0.024 0.031 -0.30 0.01 -0.003 82 56
GATE 5 cent 0.019 0.042 0.048 0.053 0.08 -0.11  -0.002 92 73
IATE N 0.021 0.089 - 0.113 - - - 89 73
ATE 1 dml 0.016 0.022 0.023 0.028 0.07 -0.07 0.002 92 71
GATE 5 0.015 0.042 0.050 0.053 0.05 -0.05 -0.001 93 78
IATE N ols 0.015 0.185 - 0.227 - - - 7 5
IATE N rf 0.009 0.216 - 0.276 - - - - -
ATE 1 dml- 0.016 0.022 0.023 0.028 0.07 -0.05 0.002 93 70
GATE 5 norm 0.016 0.042 0.050 0.053 0.06 -0.06 -0.001 93 77
IATE N ols 0.015 0.185 - 0.227 - - - 7 5
IATE N rf 0.009 0.216 - 0.276 - - - - -
ATE 1 ols 0.013 0.021 0.022 0.025 -0.05 -0.23  -0.006 75 55
GATE 5 0.012 0.050 0.048 0.062 0.02 -0.16 -0.014 70 51
IATE N 0.012 0.186 - 0.227 - - - 43 29
Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the

true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.24: Normally, uniformly distributed, and indicator covariates (X2, XV, XV)

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.160 0.161 0.062 0.172 0.21 0.30 0.003 30 10
GATE 5 0.151 0.157 0.086 0.192 0.08 -0.01 -0.001 60 39
IATE N 0.160 0.200 - 0.247 - - - 77 58
IATE eff N 0.163 0.189 - 0.231 - - - - -
ATE 1 mcf 0.054 0.066 0.062 0.082 0.18 0.46  0.001 87 65
GATE 5 cent 0.045 0.094 0.158 0.122 0.04 -0.01 -0.005 83 65
IATE N 0.054 0.158 - 0.197 - - - 86 65
IATE eff N 0.057 0.143 - 0.175 - - - - -
ATE 1 grf 0.092 0.093 0.044 0.102 -0.03 -0.20 -0.001 41 21
GATE 5 0.093 0.112 0.099 0.137 0.03 -0.09 -0.003 82 60
IATE N 0.093 0.180 - 0.219 - - - 74 55
ATE 1 grf 0.052 0.057 0.044 0.068 0.11 -0.11 -0.001 75 51
GATE 5 cent 0.054 0.089 0.097 0.113 0.05 -0.01 -0.002 90 73
IATE N 0.049 0.162 - 0.198 - - - 78 59
ATE 1 dml 0.047 0.054 0.045 0.065 0.08 -0.21  0.004 86 64
GATE 5 0.049 0.092 0.103 0.115 -0.02 -0.01 0.001 93 75
IATE N ols 0.047 0.203 - 0.255 - - - 30 20
IATE N rf 0.047 0.320 - 0.408 - - - - -
ATE 1 dml- 0.048 0.055 0.045 0.066 0.08 -0.22 0.004 84 63
GATE 5 norm 0.050 0.092 0.103 0.115 -0.02 -0.02 0.000 92 75
IATE N ols 0.049 0.202 - 0.254 - - - 29 20
IATE N rf 0.040 0.318 - 0.406 - - - - -
ATE 1 ols 0.001 0.036 0.045 0.045 0.06 -0.21  0.045 82 62
GATE 5 0.009 0.083 0.096 0.104 0.01 -0.05 0.096 80 60
IATE N 0.001 0.188 - 0.236 - - - 77 57

Note:  Table to be continued.
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Table C.24 - continued: Normally, uniformly distributed, and indicator covariates (XP, XN,

XY)
Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0120 0.120 0.028 0.124 0.32 0.41 0.004 2 0
GATE 5 0.115 0.116 0.047 0.136 0.16 -0.07 0.000 41 24
IATE N 0.120 0.145 - 0.178 - - - 78 59
IATE eff N 0.120 0.135 - 0.165 - - - - -
ATE 1 mcf 0.022 0.028 0.027 0.035 0.13 0.29 0.004 93 75
GATE 5 cent 0.017 0.052 0.047 0.066 0.17 -0.08 -0.001 85 67
IATE N 0.022 0.100 - 0.125 - - - 91 73
IATE eff N 0.022 0.086 - 0.107 - - - - -
ATE 1 grf 0.053 0.054 0.021 0.057 0.15 0.16  0.000 30 10
GATE 5 0.054 0.061 0.050 0.074 0.01 -0.28 -0.002 78 53
IATE N 0.056 0.083 - 0.107 - - - 90 76
ATE 1 grf 0.021 0.025 0.023 0.031 -0.14 0.17 -0.002 83 58
GATE 5 cent 0.022 0.043 0.048 0.054 -0.06 0.03 -0.000 92 74
IATE N 0.022 0.073 - 0.094 - - - 93 81
ATE 1 dml 0.023 0.026 0.022 0.032 0.03 0.35 0.003 90 67
GATE 5 0.024 0.045 0.052 0.058 0.12 0.11  0.001 92 76
IATE N ols 0.023 0.126 - 0.156 - - - 12 8
IATE N rf 0.016 0.248 - 0.318 - - - - -
ATE 1 dml- 0.024 0.027 0.022 0.032 0.03 0.36  0.003 88 64
GATE 5 norm 0.025 0.046 0.052 0.058 0.12 0.11  0.000 92 75
IATE N ols 0.024 0.126 - 0.156 - - - 12 8
IATE N rf 0.017 0.245 - 0.315 - - - - -
ATE 1 ols 0.003 0.016 0.021 0.021 0.10 0.03  -0.005 85 67
GATE 5 0.010 0.050 0.049 0.061 0.06 0.11  -0.015 71 50
IATE N 0.002 0.122 - 0.152 - - 64 50

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs.
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Table C.25: Four treatments

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf 0.086 0.099 0.087 0.122 0.205 -0.06 0.008 87 67
GATE 5 0.086 0.125 0.112 0.160 0.09 -0.08 0.009 85 68
IATE N 0.086 0.183 - 0.228 - - - 83 65
IATE eff N 0.084 0.167 - 0.206 - - - - -
ATE 1 mcf -0.019 0.069 0.084 0.086 0.21 -0.04 0.004 95 80
GATE 5 cent -0.019 0.138 0.112 0.167 0.06 0.04 -0.005 77 55
IATE N -0.019 0.222 - 0.264 - - - 69 46
IATE eff N -0.022 0.214 - 0.250 - - - - -
ATE 1 grf 0.027 0.052 0.060 0.066 -0.01 0.41 -0.001 92 77
GATE 5 0.027 0.107 0.132 0.136 0.05 0.05 0.001 94 80
IATE N -0.025 0.200 - 0.236 - - - 69 48
ATE 1 grf 0.004 0.049 0.062 0.062 -0.06 0.23  -0.003 95 78
GATE 5 cent 0.004 0.106 0.133 0.134 0.03 -0.03 -0.001 95 79
IATE N -0.046 0.194 - 0.232 - - - 70 50
ATE 1 dml 0.012 0.057 0.070 0.071 -0.12 -0.14 0.003 96 80
GATE 5 0.012 0.122 0.153 0.154 0.03 0.11  0.000 95 81
IATE N ols 0.012 0.310 - 0.390 - - - 43 29
IATE N rf 0.004 0.405 - 0.545 - - - - -
ATE 1 dml- 0.014 0.056 0.068 0.069 -0.09 -0.12 0.002 96 78
GATE 5 norm 0.014 0.119 0.149 0.150 0.04 0.03  -0.002 94 79
IATE N ols 0.014 0.303 - 0.381 - - - 41 27
IATE N rf 0.006 0.402 - 0.523 - - - - -
ATE 1 ols 0.019 0.054 0.064 0.067 -0.13 -0.13 -0.033 64 44
GATE 5 0.018 0.113 0.137 0.142 -0.01 -0.02 -0.070 65 46
IATE N 0.019 0.287 - 0.361 - - - 62 44

Note:  Table to be continued.
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Table C.25 - continued: Four treatments

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.075 0.077 0.044 0.087 0.00 0.65  0.005 69 38
GATE 5 0.075 0.087 0.043 0.110 0.00 0.41 0.004 74 55
IATE N 0.075 0.124 - 0.155 - - - 66 47
IATE eff N 0.077 0.114 - 0.293 - - - - -
ATE 1 mcf -0.014 0.035 0.043 0.045 -0.01 0.97 0.002 94 81
GATE 5 cent -0.014 0.069 0.061 0.084 -0.01 0.07 -0.002 84 67
IATE N -0.015 0.129 - 0.157 - - - 77 54
IATE eff N -0.012 0.121 - 0.144 - - - - -
ATE 1 grf 0.035 0.038 0.030 0.045 0.03 -0.21  0.000 81 56
GATE 5 0.035 0.060 0.067 0.076 0.08 -0.01 -0.001 91 74
IATE N 0.005 0.089 - 0.111 - - - 90 74
ATE 1 grf 0.005 0.024 0.029 0.030 -0.12 0.20 0.000 96 82
GATE 5 cent 0.005 0.053 0.066 0.066 -0.04 -0.13 -0.000 94 78
IATE N -0.022 0.092 - 0.113 - - - 88 72
ATE 1 dml 0.008 0.026 0.031 0.032 0.08 -0.32 0.004 96 83
GATE 5 0.008 0.056 0.070 0.072 0.12 0.10 0.004 95 82
IATE N ols 0.008 0.204 - 0.254 - - - 16 10
IATE N rf 0.003 0.308 - 0.419 - - - - -
ATE 1 dml- 0.009 0.026 0.031 0.032 0.08 -0.39 0.004 97 84
GATE 5 norm 0.008 0.056 0.070 0.071 0.14 0.09 0.003 95 81
IATE N ols 0.008 0.204 - 0.253 - - - 15 10
IATE N rf 0.004 0.305 - 0.412 - - - - -
ATE 1 ols 0.022 0.028 0.029 0.036 0.06 -0.04 -0.013 61 44
GATE 5 0.021 0.057 0.064 0.072 0.06 0.12 -0.030 65 46
IATE N 0.021 0.202 0.253 - - 42 28

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10'000 obs. Results
are shown for the comparison of treatments 1 to 0.
For the grf, the results differ substantially for the different treatment comparisons (which all have the same effect
size), with an RMSE of the ATE/GATE/IATE in the range of 0.066-0.154 / 0.136-0.196 / 0.089-0.116 for N=2'500
and 0.045-0.110/0.076-0.126 / 0.111-0.147 for N=10000.
For the centred grf, the RMSE of the ATE/GATE/IATE is in the range of 0.062-0.083 / 0.134-0.145 / 0.228-0.239 for
N=2'500 and 0.030-0.042 / 0.066-0.073 / 0.113-0.122 for N=10"000.
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Table C.26: Larger sample

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 40’000
ATE 1 mcf 0.111 0.111 0.012 0.112 0.12 -0.92 0.004 0 0
GATE 5 0.111 0.111 0.022 0.115 0.30 0.33 0.004 0 0
IATE N 0.111 0.120 - 0.142 - - - 45 67
IATE eff N 0.112 0.117 - 0.137 - - - - -
ATE 1 mcf 0.004 0.010 0.013 0.014 -0.01 2.40 0.002 97 87
GATE 5 cent 0.003 0.028 0.021 0.035 -0.07 1.01 0.003 84 62
IATE N 0.003 0.073 - 0.090 - - - 83 62
IATE eff N 0.001 0.067 - 0.082 - - - - -
ATE 1 grf 0.044 0.044 0.010 0.045 -0.23 0.73  0.000 3 0
GATE 5 0.043 0.045 0.024 0.050 -0.23 0.14 -0.001 51 26
IATE N 0.042 0.066 - 0.084 - - - 93 80
ATE 1 grf 0.005 0.010 0.011 0.012 0.12 -0.44 -0.001 87 71
GATE 5 cent 0.006 0.020 0.023 0.025 -0.08 -0.08 -0.000 92 76
IATE N 0.007 0.059 - 0.073 - - - 96 84
ATE 1 dml 0.008 0.011 0.009 0.012 -0.28 0.14  0.003 95 79
GATE 5 0.007 0.020 0.023 0.025 0.23 0.40 0.001 93 82
IATE N ols 0.008 0.167 - 0.201 - - - 2 1
IATE N rf 0.008 0.164 - 0.212 - - - - -
ATE 1 dml/- 0.008 0.011 0.009 0.012 -0.28 0.12  0.003 95 79
GATE 5 norm 0.008 0.020 0.023 0.025 0.23 0.40 0.001 93 82
IATE N ols 0.008 0.167 - 0.201 - - - 2 1
IATE N rf 0.008 0.164 - 0.212 - - - - -
ATE 1 ols 0.010 0.012 0.009 0.014 -0.11 -0.37 -0.002 66 42
GATE 5 0.010 0.034 0.022 0.039 0.09 0.26  -0.005 49 33
IATE N 0.010 0.169 0.203 - - 24 16

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 62 replications.
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Table C.27: Only 25% treated

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
ATE 1 mcf  0.247 0.247 0.073 0.257 -0.04 -0.12 0.001 8 2
GATE 5 0.246 0.247 0.094 0.300 -0.05 -0.09 0.001 45 26
IATE N 0.247 0.269 - 0.369 - - - 53 42
IATE eff N 0.247 0.287 - 0.360 - - - - -
ATE 1 mcf 0.087 0.094 0.071 0.112 -0.04 0.07 0.000 76 50
GATE 5 cent 0.086 0.133 0.099 0.178 -0.02 -0.02 -0.007 75 57
IATE N 0.086 0.234 - 0.280 - - - 61 40
IATE eff N 0.089 0.227 - 0.269 - - - - -
ATE 1 grf 0.144 0.144 0.051 0.152 -0.02 0.11 -0.002 17 6
GATE 5 0.143 0.156 0.111 0.187 -0.00 0.00 -0.003 71 49
IATE N 0.172 0.293 - 0.351 - - - 46 28
ATE 1 grf 0.075 0.078 0.050 0.090 0.05 -0.13 -0.001 65 39
GATE 5 cent 0.075 0.110 0.108 0.138 -0.09 0.07 -0.001 88 67
IATE N 0.108 0.274 - 0.317 - - - 47 27
ATE 1 dml 0.025 0.051 0.059 0.064 -0.15 0.10 0.005 94 79
GATE 5 0.025 0.108 0.134 0.138 0.01 0.28 -0.003 93 78
IATE N ols 0.025 0.279 - 0.351 - - - 34 23
IATE N rf 0.010 0.359 - 0.525 - - - - -
ATE 1 dml- 0.029 0.051 0.056 0.063 -0.09 0.07 0.004 93 78
GATE 5 norm 0.029 0.105 0.129 0.133 0.04 0.04 -0.003 93 77
IATE N ols 0.030 0.272 - 0.341 - - - 32 22
IATE N rf 0.016 0.351 - 0.472 - - - - -
ATE 1 ols 0.022 0.046 0.053 0.058 -0.06 0.07 -0.021 71 54
GATE 5 0.022 0.097 0.114 0.122 0.03 -0.04 -0.046 72 52
IATE N 0.022 0.257 - 0.321 - - - 62 43

Note:  Table to be continued.
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Table C.27 - continued: Only 25% treated

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
ATE 1 mcf 0.189 0.189 0.035 0.192 0.06 -0.10 0.002 0 0
GATE 5 0.188 0.188 0.053 0.214 0.03 -0.03 0.001 20 7
IATE N 0.188 0.208 - 0.257 - - - 54 42
IATE eff N 0.186 0.201 - 0.251 - - - - -
ATE 1 mcf 0.043 0.046 0.034 0.055 0.16 0.02  0.002 79 54
GATE 5 cent 0.042 0.066 0.052 0.091 0.02 0.01 0.001 80 63
IATE N 0.042 0.134 - 0.166 - - - 75 54
IATE eff N 0.042 0.127 - 0.157 - - - - -
ATE 1 grf 0.083 0.083 0.026 0.087 -0.14 0.45 -0.001 7 4
GATE 5 0.082 0.087 0.056 0.103 0.05 -0.19 -0.003 66 42
IATE N 0.098 0.130 - 0.177 - - - 76 61
ATE 1 grf 0.030 0.033 0.026 0.039 0.05 -0.33  -0.002 72 51
GATE 5 cent 0.030 0.052 0.054 0.066 -0.03 0.07 -0.001 88 71
IATE N 0.049 0.116 - 0.152 - - - 80 64
ATE 1 dml 0.012 0.024 0.028 0.030 -0.05 -0.23 0.003 94 81
GATE 5 0.011 0.053 0.065 0.067 0.03 -0.09 0.030 95 78
IATE N ols 0.011 0.193 - 0.238 - - - 12 7
IATE N rf 0.000 0.266 - 0.371 - - - - -
ATE 1 dml- 0.012 0.024 0.028 0.030 -0.03 -0.21 0.003 95 80
GATE 5 norm 0.012 0.053 0.065 0.067 0.04 -0.13 -0.001 95 78
IATE N ols 0.012 0.193 - 0.238 - - - 11 8
IATE N rf 0.001 0.264 - 0.367 - - - - -
ATE 1 ols 0.020 0.023 0.026 0.033 -0.13 0.15 -0.010 62 45
GATE 5 0.020 0.049 0.055 0.068 -0.06 0.04  0.055 66 46
IATE N 0.020 0.193 0.236 - 0.236 43 29

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 1°000 / 250 replications used for 2’500 / 10°000 obs. Mcf
results are based on version 0.4.1.
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Table C.28: More GATE groups, no selectivity

Estimation of effects Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP

groups ator abs. dev. ness Kurt- (SE) (95) (80)

error osis in % in %

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)

N = 2’500

GATE 5 mcf -0.004 0.092 0.087 0.115 0.00 0.01 0.002 86 67
GATE 10 -0.004 0.095 0.090 0.118 -0.01 -0.04 -0.001 86 86
GATE 20 -0.004 0.097 0.060 0.120 -0.01 -0.02 -0.001 85 65
GATE 40 -0.004 0.099 0.093 0.123 -0.01 -0.01 -0.003 84 64
GATE 5 mcf 0.002 0.090 0.091 0.114 0.02 0.09 -0.010 83 64
GATE 10 cent 0.002 0.094 0.094 0.117 -0.02 0.02 -0.012 82 63
GATE 20 0.002 0.094 0.094 0.118 0.00 0.04 -0.011 83 63
GATE 40 0.002 0.096 0.096 0.120 0.00 0.03 -0.013 82 62
GATE 5 grf -0.001 0.076 0.096 0.096 0.06 0.09 -0.001 95 80
GATE 10 -0.001 0.108 0.135 0.135 0.03 0.00 -0.001 95 79
GATE 20 -0.001 0.152 0.190 0.191 -0.01 0.02 -0.001 95 80
GATE 40 -0.001 0.215 0.270 0.270 0.01 0.05 -0.001 95 80
GATE 5 grf 0.004 0.075 0.094 0.094 0.01 0.01  0.000 95 80
GATE 10 cent 0.004 0.106 0.133 0.133 -0.00 0.02  0.000 95 80
GATE 20 0.004 0.150 0.189 0.189 0.02 0.07 -0.000 95 80
GATE 40 0.004 0.213 0.269 0.269 0.02 0.11 -0.001 95 80
GATE 5 dm/  -0.002 0.075 0.094 0.095 -0.02 0.04  0.002 95 81
GATE 10 -0.002 0.108 0.134 0.134 -0.02 -0.06 0.002 95 81
GATE 20 -0.002 0.152 0.191 0.191 -0.01 0.07 0.001 95 80
GATE 40 -0.002 0.217 0.272 0.273 0.01 0.06 -0.003 95 79
GATE 5 dml- -0.002 0.075 0.094 0.094 -0.02 0.05 0.002 95 80
GATE 10 norm -0.002 0.107 0.133 0.133 -0.02 -0.05 0.000 95 80
GATE 20 -0.002 0.150 0.189 0.189 -0.01 0.07 -0.001 95 80
GATE 40 -0.002 0.214 0.268 0.269 0.00 0.06 -0.003 94 79
GATE 5 ols -0.002 0.073 0.092 0.093 -0.04 0.09 -0.027 84 64
GATE 10 -0.002 0.105 0.131 0.131 -0.01 -0.03 -0.039 83 63
GATE 20 -0.002 0.149 0.187 0.187 -0.01 0.07 -0.056 83 63
GATE 40 -0.002 0.213 0.268 0.268 0.01 0.07 -0.082 83 63

Note:  Table to be continued.
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Table C.28 - continued: More GATE groups, no selectivity

Estimation of effects Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP

groups ator abs. dev. ness Kurt- (SE) (95) (80)

error osis in % in %

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)

N =10'000

GATE 5 mcf 0.001 0.049 0.045 0.063 0.07 -0.21  0.002 87 66
GATE 10 0.001 0.053 0.048 0.066 0.01 -0.23  0.000 84 64
GATE 20 0.001 0.053 0.049 0.067 0.04 -0.25 0.000 85 64
GATE 40 0.001 0.054 0.050 0.068 0.04 -0.18 -0.001 84 64
GATE 5 mcf 0.004 0.045 0.045 0.058 0.05 0.17 -0.002 87 68
GATE 10 cent 0.004 0.050 0.049 0.063 0.07 -0.22 -0.005 85 64
GATE 20 0.004 0.049 0.049 0.062 0.09 -0.16  -0.004 85 65
GATE 40 0.004 0.050 0.050 0.063 0.09 -0.11 -0.005 85 64
GATE 5 grf -0.001 0.037 0.047 0.047 -0.09 0.13 -0.001 94 80
GATE 10 -0.001 0.053 0.067 0.067 -0.03 0.03 -0.001 94 80
GATE 20 -0.001 0.076 0.094 0.095 -0.04 -0.05 -0.001 95 79
GATE 40 -0.001 0.107 0.134 0.134 -0.01 -0.00 -0.002 94 79
GATE 5 grf 0.002 0.036 0.046 0.046 -0.07 -0.05 0.001 95 80
GATE 10 cent 0.002 0.052 0.065 0.065 -0.04 -0.13 0.001 95 80
GATE 20 0.002 0.072 0.091 0.091 0.02 -0.02 0.002 96 81
GATE 40 0.002 0.104 0.130 0.130 0.03 -0.05 0.002 95 80
GATE 5 dm/  -0.001 0.037 0.046 0.046 0.06 -0.02 0.001 95 82
GATE 10 -0.001 0.052 0.064 0.064 -0.04 -0.08 0.002 96 81
GATE 20 -0.001 0.075 0.094 0.094 -0.03 0.00 0.000 95 80
GATE 40 -0.001 0.106 0.131 0.132 -0.01 -0.02 0.000 95 80
GATE 5 dml- -0.001 0.037 0.046 0.046 0.05 -0.03 0.001 95 82
GATE 10 norm -0.001 0.052 0.064 0.064 -0.04 -0.07 0.002 96 81
GATE 20 -0.001 0.075 0.093 0.093 -0.03 0.01  0.000 95 80
GATE 40 -0.001 0.106 0.132 0.132 -0.01 -0.02 0.000 95 80
GATE 5 ols 0.000 0.037 0.046 0.046 0.01 -0.03 -0.013 85 62
GATE 10 -0.001 0.052 0.064 0.064 -0.04 -0.13 -0.018 84 63
GATE 20 -0.001 0.074 0.093 0.093 -0.03 -0.02 -0.028 83 63
GATE 40 -0.001 0.105 0.131 0.132 0.01 0.00 -0.039 83 63

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 250 replications used for 10°000 obs.
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Table C.28 — continued: More GATE groups, no selectivity - Distribution of GATE minus true

value of the centred mcf
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Table C.29: More GATE groups, medium selectivity

Estimation of effects Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP

groups ator abs. dev. ness Kurt- (SE) (95) (80)

error osis in % in %

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)

N = 2’500

GATE 5 mcf 0.175 0.178 0.090 0.211 0.06 -0.04 0.008 53 32
GATE 10 0.174 0.178 0.093 0.212 0.02 -0.06 -0.003 55 33
GATE 20 0.174 0.178 0.094 0.213 0.03 -0.06 -0.003 56 34
GATE 40 0.174 0.179 0.096 0.215 0.03 -0.06  -0.005 56 35
GATE 5 mcf 0.037 0.094 0.090 0.121 0.05 0.07 -0.006 84 65
GATE 10 cent 0.036 0.097 0.094 0.126 0.02 0.02 -0.008 83 64
GATE 20 0.036 0.098 0.094 0.126 0.03 0.02 -0.007 83 64
GATE 40 0.036 0.099 0.095 0.128 0.03 0.05 -0.008 83 64
GATE 5 grf 0.097 0.113 0.096 0.137 0.03 -0.00 -0.003 81 57
GATE 10 0.097 0.134 0.134 0.166  0.02 0.04 -0.002 88 68
GATE 20 0.097 0.171 0.189 0.213 -0.01 0.05 -0.002 92 74
GATE 40 0.097 0.228 0.268 0.285 -0.01 0.09 -0.002 93 77
GATE 5 grf 0.037 0.081 0.093 0.102 -0.01 0.07 -0.000 93 76
GATE 10 cent 0.037 0.110 0.132 0.138 -0.02 0.07 -0.001 94 78
GATE 20 0.037 0.151 0.186 0.190 0.02 0.10 0.000 95 79
GATE 40 0.037 0.213 0.265 0.268 -0.01 0.08 -0.001 95 79
GATE 5 dml 0.019 0.081 0.099 0.101 -0.04 -0.05 0.001 95 80
GATE 10 0.019 0.113 0.140 0.142 -0.04 -0.06 0.001 95 79
GATE 20 0.019 0.160 0.200 0.201 -0.02 0.05 -0.001 95 79
GATE 40 0.019 0.227 0.284 0.285 -0.02 0.07 -0.005 94 79
GATE 5 dml- 0.020 0.081 0.081 0.101 -0.04 -0.05 0.001 95 79
GATE 10 norm 0.020 0.113 0.140 0.141 -0.04 -0.07 0.000 95 79
GATE 20 0.020 0.160 0.199 0.200 -0.02 0.06  -0.002 94 79
GATE 40 0.020 0.226 0.283 0.284 -0.02 0.07 -0.005 94 79
GATE 5 ols 0.007 0.080 0.094 0.100 -0.06 0.01 -0.027 81 61
GATE 10 0.006 0.110 0.133 0.138 -0.01 0.04 -0.039 82 62
GATE 20 0.006 0.154 0.191 0.194 -0.01 0.07 -0.057 82 62
GATE 40 0.006 0.219 0.273 0.275 0.02 0.06 -0.083 82 62

Note:  Table to be continued.
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Table C.29 - continued: More GATE groups, medium selectivity

Estimation of effects Estimation of std. errors

#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP

groups ator abs. dev. ness Kurt- (SE) (95) (80)

error osis in % in %

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)

N =10'000
GATE 5 mcf 0.144 0.144 0.048 0.158 0.16 -0.03 -0.001 21 7
GATE 10 0.143 0.143 0.050 0.159 0.05 -0.06 -0.002 25 8

GATE 20 0.142 0.143 0.051 0.158 0.07 -0.07 -0.001 26 10
GATE 40 0.142 0.143 0.52 0.159 0.09 -0.08 -0.002 26 11
GATE 5 mcf 0.013 0.049 0.045 0.063 0.22 0.17 0.004 86 69
GATE 10 cent 0.013 0.054 0.049 0.069 0.09 0.10 -0.002 84 63
GATE 20 0.012 0.054 0.050 0.068 0.10 0.06 -0.001 85 64
GATE 40 0.012 0.055 0.051 0.069 0.12 0.03  -0.002 84 64
GATE 5 grf 0.064 0.068 0.047 0.080 -0.03 -0.15 -0.001 71 46
GATE 10 0.064 0.076 0.067 0.093 0.00 -0.07 -0.001 84 60
GATE 20 0.064 0.092 0.094 0.114 -0.04 -0.04 -0.001 89 69
GATE 40 0.064 0.119 0.133 0.148 -0.03 -0.00 -0.001 92 75
GATE 5 grf 0.016 0.041 0.048 0.051 -0.04 -0.03 -0.001 92 75
GATE 10 cent 0.016 0.055 0.065 0.068 -0.05 -0.09 -0.000 94 78
GATE 20 0.016 0.075 0.092 0.094 -0.01 0.02  0.000 95 79
GATE 40 0.016 0.106 0.131 0.132 -0.01 -0.04 0.000 95 79
GATE 5 dml 0.010 0.041 0.050 0.051 0.14 0.04  0.000 94 80
GATE 10 0.010 0.056 0.069 0.070 0.05 0.05 0.001 94 80
GATE 20 0.010 0.081 0.100 0.101 -0.04 0.01 -0.001 94 79
GATE 40 0.010 0.113 0.140 0.141 -0.01 -0.08 -0.001 95 79
GATE 5 dml/- 0.010 0.041 0.050 0.051 0.13 0.04  0.000 94 80
GATE 10 norm 0.010 0.056 0.069 0.070 0.05 0.05 0.001 94 80
GATE 20 0.010 0.081 0.100 0.101 -0.04 0.01 -0.001 94 79
GATE 40 0.010 0.113 0.140 0.141 -0.01 -0.08 -0.001 95 79
GATE 5 ols 0.007 0.046 0.047 0.058 0.09 0.22 -0.014 74 53
GATE 10 0.007 0.059 0.066 0.075 0.05 0.02 -0.019 75 58
GATE 20 0.007 0.081 0.095 0.101 -0.03 -0.03 -0.029 80 60
GATE 40 0.007 0.111 0.134 0.139 0.00 -0.05 -0.040 81 61

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 250 replications used for 10°000 obs.
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Table C.29 — continued: More GATE groups, medium selectivity - Distribution of GATE

minus true value of the centred mcf
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Table C.30: More GATE groups, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N = 2’500
GATE 5 mcf 0436 0436 0.010 0.455 0.00 0.06 0.001 1 0
GATE 10 0.435 0.435 0.097 0.455 0.00 0.03  0.000 2 0
GATE 20 0.434 0.434 0.097 0.439 0.02 -0.03 -0.001 0 0
GATE 40 0.435 0.435 0.064 0.439 0.02 -0.04 -0.001 0 0
GATE 5 mcf 0.046 0.112 0.085 0.146 -0.03 0.11  0.009 81 62
GATE 10 cent 0.044 0.117 0.089 0.151 -0.03 0.07 0.007 80 61
GATE 20 0.044 0.117 0.089 0.152 -0.01 0.05 0.008 80 62
GATE 40 0.043 0.119 0.090 0.153 0.00 0.06  0.007 80 61
GATE 5 grf 0.284 0.284 0.101 0.309 -0.06 0.06 -0.011 19 8
GATE 10 0.283 0.287 0.136 0.322 -0.03 0.02 -0.009 42 21
GATE 20 0.284 0.297 0.187 0.346 -0.04 0.03  -0.006 63 39
GATE 40 0.283 0.324 0.260 0.391 -0.06 0.09 -0.004 79 55
GATE 5 grf 0.090 0.119 0.096 0.148 0.00 0.09 -0.007 75 56
GATE 10 cent 0.090 0.138 0.130 0.173 -0.02 0.06  -0.005 84 64
GATE 20 0.090 0.171 0.181 0.214 0.00 0.09 -0.003 89 71
GATE 40 0.090 0.223 0.255 0.280 -0.03 0.10 -0.003 92 75
GATE 5 dml 0.147 0.165 0.127 0.195 -0.61 466 -0.014 66 46
GATE 10 0.147 0.187 0.173 0.228 -0.78 8.17 -0.017 78 57
GATE 20 0.147 0.226 0.241 0.284 -0.99 12.63 -0.025 84 64
GATE 40 0.148 0.286 0.338 0.372 -1.07 14.96 -0.040 87 69
GATE 5 dml- 0.140 0.157 0.123 0.187 -0.13 0.01 -0.005 74 52
GATE 10 norm 0.140 0.182 0.170 0.221 -0.15 0.08 -0.005 82 62
GATE 20 0.140 0.225 0.239 0.278 -0.21 0.34 -0.010 87 68
GATE 40 0.140 0.293 0.338 0.367 -0.29 0.76  -0.020 89 71
GATE 5 ols 0.111 0.112 0.054 0.123 -0.02 0.01 -0.015 25 13
GATE 10 0.109 0.153 0.143 0.188 -0.04 -0.04 -0.042 69 49
GATE 20 0.109 0.190 0.202 0.236 0.00 0.00 -0.060 75 55
GATE 40 0.109 0.250 0.288 0.313 0.01 0.08 -0.087 79 58

Note:  Table to be continued.
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Table C.30 - continued: More GATE groups, strong selectivity

Estimation of effects Estimation of std. errors
#of Estim-  Bias Mean Std. RMSE  Skew- Ex. Bias CovP CovP
groups ator abs. dev. ness Kurt- (SE) (95) (80)
error osis in % in %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12)
N =10'000
GATE 5 mcf 0375 0.375 0.053 0.384 -0.10 -0.10 -0.002 0 0
GATE 10 0.374 0374 0.056 0.383 -0.09 -0.09 -0.002 0 0
GATE 20 0.373 0373 0.056 0.383 -0.09 -0.08 -0.002 0 0
GATE 40 0.373 0.373 0.057 0.383 -0.08 -0.06 -0.002 0 0
GATE 5 mcf -0.014 0.085 0.045 0.100 0.01 0.03  0.007 65 41
GATE 10 cent -0.016 0.091 0.049 0.104 -0.05 -0.04 0.005 62 35
GATE 20 -0.016 0.090 0.049 0.104 -0.03 0.02 0.006 63 37
GATE 40 -0.016 0.091 0.050 0.104 -0.02 -0.02 0.005 63 37
GATE 5 grf 0.211 0.211 0.052 0.220 0.00 -0.04 -0.005 3 0
GATE 10 0.211 0.211 0.071 0.225 0.01 0.02 -0.006 15 5
GATE 20 0.211 0.212 0.096 0.234 -0.01 0.01 -0.004 39 19
GATE 40 0.211 0.219 0.134 0.252 -0.06 0.04 -0.004 63 37
GATE 5 grf 0.043 0.063 0.051 0.080 -0.09 0.03  -0.006 75 56
GATE 10 cent 0.043 0.073 0.068 0.092 -0.06 0.17 -0.004 83 63
GATE 20 0.043 0.089 0.093 0.112 -0.08 0.08 -0.002 89 71
GATE 40 0.043 0.115 0.130 0.145 -0.02 -0.03 -0.002 92 74
GATE 5 dml 0.088 0.099 0.091 0.119 0.10 6.78 -0.015 62 42
GATE 10 0.088 0.110 0.104 0.138 0.13 8.59 -0.017 74 53
GATE 20 0.088 0.132 0.144 0.173 -0.21 10.79 -0.024 83 61
GATE 40 0.088 0.164 0.198 0.224 -0.62 11.75 -0.032 87 68
GATE 5 dml- 0.078 0.090 0.073 0.108 -0.08 0.04 -0.007 71 49
GATE 10 norm 0.079 0.103 0.098 0.127 -0.09 0.30 -0.006 81 60
GATE 20 0.079 0.129 0.138 0.160 -0.22 1.02 -0.010 87 67
GATE 40 0.079 0.164 0.192 0.209 -0.35 1.75 -0.015 89 71
GATE 5 ols 0.113 0.118 0.052 0.134 0.05 -0.07 -0.015 27 17
GATE 10 0.110 0.1212 0.071 0.142 -0.02 -0.13 -0.021 42 27
GATE 20 0.110 0.132 0.100 0.158 0.02 -0.07 -0.029 56 38
GATE 40 0.110 0.153 0.141 0.187 -0.01 -0.06 -0.042 67 47

Note:  For GATE and IATE, results are averaged over all effects. CovP (95, 80) denotes the (average) probability that the
true value is part of the 95% / 80% confidence interval. 250 replications used for 10°000 obs.
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Table C.30 — continued: More GATE groups, strong selectivity - Distribution of GATE minus

true value of the centred mcf
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